Université Paris Ouest Nanterre La Défense UFR SPSE-Master 1 PMP STA 21 Méthodes statistiques pour l'analyse des données en psychologie

TD : Régression linéaire

Exercice 1 : Régression linéaire simple

On souhaite étudier le niveau de stress en fonction du bruit. Pour cette étude, télécharger le fichier "bruitstress.sta" sur le cours **Méthodes statistiques pour l'analyse des données en psychologie** (téléchargeable à l'adresse http://coursenligne.u-paris10.fr).

On considère 30 individus soumis à différents niveaux de bruit (variable BRUIT) (mesurés en décibels) et on mesure pour chacun d'entre eux le niveau de stress (variable STRESS).

- 1. Décrire les variables.
- 2. Représenter graphiquement le nuage de points. Un modèle linéaire semble-t-il pertinent?
- 3. Rajouter sur le graphique la droite de régression, l'équation de la droite, les coefficients de corrélation et de détermination.
- 4. Interpréter les résultats de la régression. Relever les valeurs estimées des deux coefficients. Tester séparément la nullité de chacun des coefficients.
- 5. Calculer les valeurs prévues et les résidus pour toutes les observations.
- 6. Prévoir le niveau de stress que provoquerait un niveau de bruit de 90db.
- 7. Vérifier les conditions :
 - (a) Vérifier la normalité des résidus.
 - (b) Vérifier l'hypothèse d'homoscédasticité.
- 8. Analyse des valeurs atypiques.

Exercice 2 : Régression linéaire multiple

Cet exemple est tiré de "Weight, Shape, and Body Image" de David C. Howell basé sur un article de Geller, Johnston, and Madsen, 1997. Pour plus d'information, se référer à la page http://www.uvm.edu/~dhowell/StatPages/More_Stuff/Geller.html

Dans cet article, le but des auteurs était de montrer chez les femmes que la variable SAWBS (Shape And Weight Based Self-esteem inventory) a un rôle dans la prévision d'un dérèglement du comportement de l'alimention, rôle indépendant des variables traditionnellement mises en cause dans ce comportement telles que la dépression, l'estime de soi...

Dans cet exercice, on va utiliser ces données (télécharger le fichier "image-corporelle.sta") pour illustrer un problème de régression linéaire multiple. On mesure 10 variables sur un échantillon de 84 femmes :

- SAWBS : indice indiquant dans quelle mesure les sentiments de valeur personnelle sont fondés sur l'image de son corps (mesure d'influence et non de satisfaction).

- WtPercep : score à l'échelle d'auto-évaluation de la perception de son poids, de 1 : en surchage pondérale extrême à 7 : très maigre.

- ShPercep : score à l'échelle d'auto-évaluation de la perception de sa ligne, de 1 : pas du tout attirante à 7 : très attirante.

- HIQ (Health Inventory Questionnary) : mesure la présence et la gravité de certaines pratiques alimentaires perturbées, valeurs de 0 à 69.

- EDIcomp (Eating Disorders Composite Index) : indice composé de la somme des scores à 3 échelles d'évaluation de désordre alimentaire.

- RSES : score à l'échelle d'estime de soi de Rosenberg, valeurs de 10 (faible estime de soi) à 50 (grande estime de soi).

- BDI (Beck Depression Inventory) : mesure de la dépression, valeurs de 0 à 63, plus le score est élevé, plus la dépression est importante.

- BMI (Body Mass Index) : mesure de la masse corporelle basée sur le poids et la taille.

- SES : statut socio-économique.

- SocDesir : échelle de "désirabilité sociale" prenant des valeurs de 0 à 10 exprimant la tendance d'un individu à avoir une bonne réponse aux différentes sollicitations sociales.

Remarque : Certaines données confidentielles ont été simulées et de ce fait, certaines observations tombent en dehors des échelles décrites précédemment.

1. Etude descriptive des variables.

2. Etude des corrélations entre variables.

- (a) Déterminer la matrice de corrélations.
- (b) Tracer les nuages de points pour tous les couples de variables.

3. Etude du modèle de régression multiple

- (a) Pour répondre au problème initial, que peut-on choisir comme VI et VD?
- (b) Dans la suite, on considère la variable dépendante : EDIcomp et 8 variables indépendantes : SAWBS, WtPercep, ShPercep, RSES, BDI, BMI, SES, SocDesir.
 - i. Donner les coefficients de l'équation de la régression linéaire multiple de EDIcomp en fonction de SAWBS, WtPercep, ShPercep, RSES, BDI, BMI, SES, SocDesir.
 - ii. Tester l'hypothèse " tous les coefficients $b_j, j = 1, ..., 8$ sont nuls".
 - iii. Tester individuellement la nullité de chaque paramètre b_j , j = 0, ..., 8. Que peut-on conclure? En choisissant le modèle restreint (obtenu en retirant les variables X_j dont le coefficient correspondant b_j dans l'équation est non significatif), que vaut le coefficient R^2 de ce nouveau modèle?
 - iv. Etudier la redondance des variables.
 - v. Analyse des résidus du modèle complet.
 - vi. Suppression de variables : méthode pas à pas.Donner le modèle retenu par la méthode descendante et vérifier sa qualité.Donner le modèle retenu par la méthode ascendante et vérifier sa qualité.
- (c) Conclure.

Exercice 1 : Régression simple

- 1. Spécifier la variable indépendante et la variable dépendante. Calculer les résumés standard des deux variables : minimum, maximum, moyenne,... (voir TD1).
- 2. Représenter graphiquement le nuage de points. Un modèle linéaire semble-t-il pertinent ? Utiliser le menu

Graphiques / Graphiques en 2D / Nuage de points en 2D/ cliquer sur variables/ mettre pour X : BRUIT et pour Y : STRESS / Désactiver l'option type d'ajustement linéaire/ cliquer sur OK

3. Rajouter sur le graphique la droite de régression, l'équation de cette droite et les coefficients de corrélation et détermination.

Utiliser le menu

Graphiques / Graphiques en 2D / Nuage de points en 2D / cliquer sur variables / mettre pour X : BRUIT et pour Y : STRESS / cocher type d'ajustement linéaire / dans Avancé, cocher dans l'option Staitistiques : R deux, corrélation et équation de la droite

stress = -21,8685 + 0,4865 * bruit

Utiliser le menu

 $Graphiques \ / \ Graphiques \ en \ 2D \ / \ Nuage \ de \ points \ en \ 2D \ / \ cocher \ type \ d'ajustement \ linéaire \ / \ bandes \ de \ régression \ soit \ confiance \ soit \ prévision$

Remarquer que l'intervalle de prévision est plus large que l'intervalle de confiance (cf formules cours)
4. Interpréter les résultats de la régression. Relever les valeurs estimées des deux coefficients. Tester séparément la nullité de chacun des coefficients.

Utiliser le menu Statistiques / Régression multiple

Taper OK

📈 Résultats de la Régression Multiple : bruit-stress	? _ 🔀
Résultats Régress. Multiple	
Var dép. : STRESS R Multiple = ,97939626 F = 658, R ⁴ = ,95921703 dl = 1, Nb d'obs. : 30 R ⁴ ajusté = ,95776050 p = 0,00	5611 28 0000
Erreur-type de l'estim. : ,974131543 Ord.Orig : -21,86849218 ErrType: 1,428303 t(28) = -15,31	p = ,0000
BRUIT bêta=,979	
(bêta significatifs en surbrillance)	r⊳ ▲
Alpha pour la mise en surbrillance des effets : 05	
Base Avancé Résidus/hypothèses/prévisions	Annuler
Synthèse : Résultats de la régression	Doptions -

Cliquer sur synthése des résultats dans base

	Synthèse R= ,97939 F(1,28)=6	de la Régr 626 R²= ,9 58,56 p<0,1	ession; Va 5921703 F 0000 Err-Ty	riable Dép. № Ajusté = ype de l'Es	: STRESS ,95776050 tim.: ,9741	6 (bruit-stre:) 3	ss)					
N-30	Bêta	Err-Type	В	Err-Type	t(28)	niveau p						
OrdOria		ue Dela	21 0000	1 429204	15 2109	0.000000						
BRUIT	0.979396											

On lit les estimations de b_0 et b_1 dans la colonne B.

La colonne beta correspond aux coefficients estimés pour les variables BRUIT et STRESS centrées réduites, dans le cas simple pas d'intérêt, par contre cela aura de l'intérêt dans le cas multiple (voir ex 2).

 $R^2=0,959\ très\ bon\ ajustement$

t(28), expliquer ddl = 28 = 30-2 et de plus pour b_1 , on a $(F(1,28))^{1/2} = t(28)$, $25,6624^2 = 658,56$ On rejette individuellement la nullité de b_0 et b_1 .

5. Calculer les valeurs ajustées et les résidus pour toutes les observations.

Rouvrir la boîte de dialogue, cliquer sur Résidus/ hypothèses/Prévisions

📈 Résultats de la Régression Multiple : bruit-stress	? 🗕 🔀
Résultats Régress. Multiple	
Var dép. : STRESS R Multiple = ,97939626 F = 658,5611 R ^s = ,95921703 dl = 1,28 Nb d'obs. : 30 R ^s ajusté = ,95776050 p = 0,000000 Erreur-type de l'estim. : ,974131543	
Ord.Orig : -21,86849218 ErrType: 1,428303 t(28) = -15,31 p =	,0000
BRUIT bêta=,979 (bêta significatifs en surbrillance)	[b.] +]
Alpha pour la mise en surbrillance des effets : 05 ∎ Base Avancé Résidus/hypothèses/prévisions Image: Analyse des résidus Image: Statistiques descriptives Image: Statistiques descriptives Image: Générateur de gode ▼ Calculer les limites de confiance Alpha : 05 ∎	OK Annuler Options Par Groupes

Cliquer sur analyse des résidus

📈 Analyse des Résidus : bruit-stress	?-X
Var dép. : STRESS R Multiple : ,97939626 F = 658,5610 R ^{\$} : ,95921703 dl = 1,28 Nbre d'obs. : 30 R ^{\$} ajusté : ,95776050 p = 0,000000 Erreur-type de l'estim.: ,974131543 Ord.Orig : -21,86849218 Err-Type : 1,428303 t(28) = -15,30	L D Lp<,0000 Eg t
Nuages de points Tracés de probas Points atypiques Enregistrer Base Avancé Résidus Valeurs prévues Images Synthèse : Résidus & prévisions Images de Henry des résidus Images de points Images de points Images Synthèse : Résidus & prévisions Images de points Images de points Images de points Images Synthèse : Résidus & prévisions Images de points Images de points Images de points Images Synthèse : Résidus Images de points Images de points Images de points Images : Droite de Henry des résidus Images de points Images de points Images de points	Annuler Annuler Coptions Par Groupes

Cliquer sur synthèse : résidus et prévisions

	Valeurs Pré Var. déper	/aleurs Prévues & Résidus (bruit-stress) Var. dépendante : STRESS										
	Valeur Valeur Résidus Val.Pré Standard Err.Type Mahalanobis Résidus Cook											
N° d'Obs.	Observée	Prévue		Standard	Résidus	Val.Prév	(dist.)	Supprim.	(dist.)			
1	11,00000	10,34013	0,65987	-0,89611	0,67740	0,240640	0,803021	0,70276	0,015880			
2	11,00000	12,04300	-1,04300	-0,52928	-1,07070	0,201985	0,280142	-1,08986	0,026908			
3	23,00000	22,74677	0,25323	1,77651	0,25996	0,367288	3,155980	0,29520	0,006527			
4	21,00000	21,72504	-0,72504	1,55641	-0,74430	0,333012	2,422411	-0,82099	0,041504			
5	9,00000	9,36706	-0,36706	-1,10573	-0,37680	0,267653	1,222643	-0,39703	0,006270			
6	18,00000	18,51391	-0,51391	0,86467	-0,52756	0,236845	0,747658	-0,54620	0,009293			
7	9,00000	7,32361	1,67639	-1,54593	1,72091	0,331410	2,389896	1,89582	0,219193			
8	14,00000	15,10817	-1,10817	0,13101	-1,13760	0,179423	0,017164	-1,14708	0,023521			
9	21,00000	20,94659	0,05341	1,38872	0,05483	0,307792	1,928531	0,05934	0,000185			
10	16,00000	15,98393	0,01607	0,31967	0,01650	0,187016	0,102187	0,01668	0,000005			
11	8,00000	8,29668	-0,29668	-1,33631	-0,30456	0,300106	1,785728	-0,32779	0,005373			
12	11,00000	10,24282	0,75718	-0,91708	0,77729	0,243210	0,841029	0,80752	0,021417			
13	10,00000	11,02127	-1,02127	-0,74938	-1,04840	0,223622	0,561574	-1,07809	0,032273			

6. Prévoir le niveau de stress que provoquerait un niveau de bruit de 90db.

🗾 Résultats de la Régression	n Multiple : bruit-stress	? _ 🗙
Résultats Régress. Mul	tiple	
Var dép. : STRESS	R Multiple = ,97939626 F = 658, R ^s = 95921703 dl = 1.	5611 28
Nb d'obs. : 30 Erreur-t	R ^s ajusté = ,95776050 p = 0,00 ype de l'estim. : ,974131543	0000
Ord.Orig : -21,86849218	ErrType: 1,428303 t(28) = -15,31	p = ,0000
BRUIT bêta=,979)	
(bâta significatifs on	curbrillance)	
(beta significatils en	Subfillance,	4 <u>5</u> ±
Alpha pour la mise en surbrillance de	es effets : 💭 💂	📰 ОК
Base Avancé Résidus/hypotł	nèses/prévisions	Annuler
🔠 Analyse des résidus	Valeurs prévues	> Options ▼
📟 Statistiques descriptives	? Prévoir les valeurs de la variable dépendante	
	Calculer les limites de confiance Alpha: 05	
	C Calculer les limites de prévision	

📈 Résultats de la Régression Mu	ultiple : bruit-stress 🛛 🔁 🛛 🖾
Résultats Régress. Mul	ltiple
Var dép. : STRESS	R Multiple = ,97939626 F = 658,5611 R ⁴ = ,95921703 dl = 1,28
Erreur-t	r ajuste = ,95778050 p = 0,000000 type de l'estim. : ,974131543
Ord.Orig : -21 Spécifiez	les valeurs des var. indép.
(bêta significa Alpha pour la mise en su Base Avancé Ré	BRUIT 90 CK Annuler Valeur commune O S Appliquer Manuler
Analyse des résidus Statistiques descriptives Générateur de code	Valeurs prévues ? Prévoir les valeurs de la variable dépendante ○ Calculer les limites de confiance ○ Calculer les limites de prévision

	Valeurs Pr Variable: \$	Valeurs Prévues (bruit-stress) Variable: STRESS									
	Pond-B	Valeur	Pond-B								
Variable			* Valeur								
BRUIT	0,486535	90,00000	43,7882								
Ord.Orig			-21,8685								
Prévision			21,9197								
-95,0%LC			21,2243								
+95,0%LC			22,6150								

- 7. Vérifier les conditions.
 - (a) Vérifier la normalité des résidus.

 $\label{eq:tilde} Utiliser le menu \ Statistiques \ / \ Régression \ multiple \ / \ Résidus \ , \ hypothèses \ , \ prévision \ / \ Analyse \ des \ résidus$

Cliquer sur base puis droite de Henry

Les points sont proches de la droite, on peut accepter la normalité

(b) Vérifier l'hypothèse d'homoscédasticité.

Utiliser le menu Statistiques / Régression multiple / Résidus, hypothèses, prévision / Analyse des résidus / Nuages / valeurs prévues vs résidus

pas de forme particulière du nuage, donc homoscédasticité, cadre général permet aussi de vérifier l'adéquation du modèle car nuage de points impossible

8. Analyse des valeurs atypiques.

Il y a deux graphiques pour repérer les observations "atypiques". Utiliser le menu Statistiques / Régression multiple / Résidus, hypothèses, prévision / Analyse des résidus / Nuages/ valeurs prévues vs observées

Ce graphique permet de détecter les observations mal prévues par le modèle (résidus anormalement

élevés).

Ce graphique permet de détecter les observations qui ont une influence exagérée sur l'estimation des coefficients.

Utiliser le menu Statistiques / Régression multiple / Résidus, hypothèses, prévision / Analyse des résidus / Nuages/résidus vs résidus supprimés

On ne repère pas de points particuliers

Cliquer sur Tracé des points aatypiques

										Résidus Sta Pts Atypiqu	andard : S ies	FRESS (br	uit-stress)		
Résidus Standard										Valeur	Valeur	Résidus	Standard	Standard	Err.Type
Obs.	-	5.	-4.	-3.	±2	2.	з.	4.	5.	Observée	Prévue		Val.Prév	Résidus	Val.Prév
	24				*			1.1		5,000000	7,323608	-2,32361	-1,54593	-2,38531	0,331410
Minim	um				*					5,000000	7,323608	-2,32361	-1,54593	-2,38531	0,331410
Maxim	um				*					5,000000	7,323608	-2,32361	-1,54593	-2,38531	0,331410
Moyen	ne				*					5,000000	7,323608	-2,32361	-1,54593	-2,38531	0,331410
Média	ne				*					5,000000	7,323608	-2,32361	-1,54593	-2,38531	0,331410

Cliquer sur Tracé des points aatypiques

								Dist. de Cook : STRESS (bruit-stress)							
								(trié)							
				Dist	. de	Cook		Valeur	Valeur	Résidus	Standard	Standard	Err.Type	Mahalanobis	Résidus
Obs.	,00	00		•			.,421	Observée	Prévue		Val.Prév	Résidus	Val.Prév	(dist.)	Supprim.
	24 .			•		•	. *	5,00000	7,32361	-2,32361	-1,54593	-2,38531	0,331410	2,389896	-2,62775
	7.			•	•*	•	· ·	9,00000	7,32361	1,67639	-1,54593	1,72091	0,331410	2,389896	1,89582
	16 .		*	•		•	· ·	16,00000	14,08644	1,91355	-0,08909	1,96437	0,178580	0,007937	1,98010
	27 .		*	•				20,00000	20,94659	-0,94659	1,38872	-0,97173	0,307792	1,928531	-1,05157
	26		*.					12,00000	10,72935	1,27065	-0,81227	1,30439	0,230695	0,659779	1,34614
	4.		۰.	•				21,00000	21,72504	-0,72504	1,55641	-0,74430	0,333012	2,422411	-0,82099
	22 .		۰.	•			· ·	24,00000	23,42792	0,57208	1,92324	0,58727	0,390723	3,698853	0,68176
	17 .		۰.					17,00000	15,64336	1,35664	0,24630	1,39267	0,183347	0,060664	1,40647
	13 .		۰.	•				10,00000	11,02127	-1,02127	-0,74938	-1,04840	0,223622	0,561574	-1,07809
	2.	. *		•				11,00000	12,04300	-1,04300	-0,52928	-1,07070	0,201985	0,280142	-1,08986
	23 .	. *						13,00000	14,13510	-1,13510	-0,07861	-1,16524	0,178419	0,006179	-1,17450
	8.	. *						14,00000	15,10817	-1,10817	0,13101	-1,13760	0,179423	0,017164	-1,14708
	18 .	. *						18,00000	17,05431	0,94569	0,55025	0,97081	0,203809	0,302771	0,98898
	12 .	. *		•				11,00000	10,24282	0,75718	-0,91708	0,77729	0,243210	0,841029	0,80752
	29.	. *	•					10,00000	10,72935	-0,72935	-0,81227	-0,74872	0,230695	0,659779	-0,77269
	1.	. *						11,00000	10,34013	0,65987	-0,89611	0,67740	0,240640	0,803021	0,70276
	25 .	*						13,00000	12,28627	0,71373	-0,47688	0,73269	0,197668	0,227414	0,74438
	28 .	*						13,00000	13,74587	-0,74587	-0,16245	-0,76568	0,180263	0,026391	-0,77232
	14 .	*		•				19,00000	19,48698	-0,48698	1,07429	-0,49992	0,263430	1,154098	-0,52541
	6.	*		•				18,00000	18,51391	-0,51391	0,86467	-0,52756	0,236845	0,747658	-0,54620
	21 .	*	•					19,00000	18,51391	0,48609	0,86467	0,49899	0,236845	0,747658	0,51663
	3.	*	•					23,00000	22,74677	0,25323	1,77651	0,25996	0,367288	3,155980	0,29520
	5.	*						9,00000	9,36706	-0,36706	-1,10573	-0,37680	0,267653	1,222643	-0,39703
	11 .	*						8,00000	8,29668	-0,29668	-1,33631	-0,30456	0,300106	1,785728	-0,32779
	19.	*	•					11,00000	10,63205	0,36795	-0,83323	0,37772	0,233128	0,694271	0,39031
	30 .	*						13,00000	12,67549	0,32451	-0,39303	0,33312	0,191535	0,154475	0,33756
	15 .	*						15,00000	14,76759	0,23241	0,05764	0,23858	0,178157	0,003323	0,24045
	20	*						15 00000	15 15682	-0 15682	0 14149	-0 16099	0 179684	0.020020	-0 16235

Les résidus standart permettent de détecter les valeurs atypiques au niveau de la variable expliquée (mal prévue), la distance de Mahalahobis permet de détecter les points leviers, les résidus supprimés permettent de détecter les observations influentes, la distance de Cook permet de détecter tous ces points. Outil important en régression multiple car on ne peut pas représenter les variables. L'individu 24 est légèrement atypique, pour bruit=60, stress = 5, voir sur le nuage de points les observations 24, 7, 16,...

Exercice 2 : Régression multiple

Le but de cette étude est de montrer que la variable SAWBS (Shape And Weight Based Self-esteem inventory) a un rôle dans la prévision d'un déréglement du comportement de l'alimention, rôle indépendant des variables traditionnellement mis en cause dans ce comportement tels que la dépression, l'estime de soi...

1. Etude des relations entre variables.

Utiliser le menu *Statistiques / Statistiques élémentaires / Matrice de corrélations* Sélectionner toutes les variables et cliquer sur Synthèse : Matrice de corrélations

Matrices de Corrélations : image-corporelle	? _ 🔀
2 listes (matrice rectang.)	Synthèse
1ère liste : TOUT 2nde liste :	Annuler
Base Avancé/tracé Options	Doptions -
Synthèse : Matrice de <u>c</u> orrélations Matrice	
Corrélations partielles Matrice	
Les corrélations partielles sont calculées pour les variables de la 1ère liste, en retirant l'influence des variables de la 2nde liste.	
Nuages de points en <u>2</u> D avec noms d'obs.	Moments pondérés
Nuages de points en <u>3</u> D avec noms d'obs.	© P-1 O N-1
Nuage matriciel	Traitement des VM
Surface Listogrammes en 3D	 Obs. ignorée Cellule ignorée

	Corrélatio Corrélatio N=84 (Ob	Corrélations (image-corporelle) Corrélations significatives marquées à p < ,05000 N=84 (Observations à VM ignorées)											
Variable	SAWBS	SAWBS WTPERCEP SHPERCEP HIQ EDICOMP RSES BDI BMI SES SOCDESIR											
SAWBS	1,00	-0,39	-0,39	0,61	0,61	-0,38	0,42	0,17	-0,13	-0,13			
WTPERCEP	-0,39	1,00	0,56	-0,56	-0,61	0,38	-0,45	-0,61	0,00	0,23			
SHPERCEP	-0,39	0,56	1,00	-0,55	-0,67	0,42	-0,47	-0,32	0,14	-0,07			
HIQ	0,61	-0,56	-0,55	1,00	0,86	-0,61	0,66	0,22	-0,18	-0,36			
EDICOMP	0,61	-0,61	-0,67	0,86	1,00	-0,68	0,71	0,24	-0,18	-0,17			
RSES	-0,38	0,38	0,42	-0,61	-0,68	1,00	-0,79	-0,06	0,18	0,26			
BDI	0,42	-0,45	-0,47	0,66	0,71	-0,79	1,00	0,08	-0,25	-0,33			
BMI	0,17	-0,61	-0,32	0,22	0,24	-0,06	0,08	1,00	0,02	-0,01			
SES	-0,13	0,00	0,14	-0,18	-0,18	0,18	-0,25	0,02	1,00	0,16			
SOCDESIR	-0,13	0,23	-0,07	-0,36	-0,17	0,26	-0,33	-0,01	0,16	1,00			

Utiliser le menu *Statistiques / Statistiques élémentaires / Matrice de corrélations* Sélectionner toutes les variables et cliquer sur Nuage matriciel

Matrices de Corrélations : image-corporelle	? _ 🗙
1 liste de variables 2 listes (matrice rectang.)	Synthèse
1ère liste : TOUT 2nde liste :	Annuler
Base Avancé/tracé Options	Doptions -
Synthèse : Matrice de <u>c</u> orrélations Mat <u>r</u> ice	
Corrélations partielles Matrice	
Les corrélations partielles sont calculées pour les variables de la 1ère liste, en retirant l'influence des variables de la 2nde liste.	
Nuages de points en <u>2</u> D avec noms d'obs.	Moments pondérés
Use Nuages de points en <u>3</u> D avec noms d'obs.	© P-1 O N-1
Nuage matriciel	Traitement des VM
Sur <u>f</u> ace	 Obs. ignorée Cellule ignorée

 $fortes\ corrélations\ d'edicomp\ avec\ hiq,\ bdi,\dots,\ corrélation\ faible\ entre\ sawbx\ et\ bmi=0,17$

2. Etude du modèle de régression multiple

(a) Pour répondre au problème initial, que peut-on choisir comme VI et VD?

on peut prendre comme VD : edicomp ou hiq et VI les autres

(b) Dans la suite, on considère la variable dépendante : EDIcomp et 8 variables indépendantes :

SAWBS, WtPercep, ShPercep, RSES, BDI, BMI, SES, SocDesir.

i. Donner l'équation de régression multiple de EDIcomp en fonction de SAWBS, WtPercep, ShPercep, RSES, BDI, BMI, SES, SocDesir.

? 🖉 Régression Linéaire Multiple : image-corporelle Base Avancé -----OK) Annuler 👧 Variables Dépendante(s) : EDICOMP $\mathbf{\lambda}$ Options Ŧ Indépendantes : 1-3 6-10 ð 0<u>u</u>vrir Fichier d'entrée : Données brutes • SELECT CASES ÔΡ <u>s</u> Options avancées (régression ridge ou pas-à-pas) Statistiques descriptives, matrice de corrélations Moments pondérés Calculs en précision étendue © P-1 O N-1 Г Traitement/reporting par lots Impression/rapport de l'analyse des résidus. Traitement des VM Spécifiez toutes les variables à inclure dans l'analyse ; vous Obs. ignorée pourrez spécifier d'autres modèles (variables indép./dép.) ultérieurement. Pour une régression pas-à-pas, etc... cochez Cellule ignorée les Options avancées. Remplacement par la moyenne Voir aussi le module Modèles Généraux de Régression (GRM).

Utiliser le menu Statistiques / Régression multiple

Taper OK

Cliquer sur synthése des résultats dans base

	Synthèse de la Régression; Variable Dép. : EDICOMP (image-corporelle) R= ,87026299 R²= ,75735768 R² Ajusté = ,73147583 F(8,75)=29,262 p<0,0000 Err-Type de l'Estim.: 9,0681											
	Bêta	Bêta Err-Type B Err-Type t(75) niveau p										
N=84	de Bêta de B											
OrdOrig.			69,24250	18,39961	3,76326	0,000331						
SAWBS	0,265329	0,065739	0,09985	0,02474	4,03607	0,000130						
WTPERCEP	-0,210000	0,094154	-5,24591	2,35200	-2,23040	0,028712						
SHPERCEP	-0,266485	0,078214	-3,88609	1,14057	-3,40715	0,001058						
RSES	-0,240468	0,094372	-0,51320	0,20141	-2,54807	0,012878						
BDI	0,196144	0,104126	0,47670	0,25306	1,88372	0,063479						
BMI	-0,052406	0,075707	-0,29583	0,42736	-0,69222	0,490937						
SES	-0,016656	0,060339	-0,29142	1,05569	-0,27605	0,783272						
SOCDESIR	0,026794	0,065594	0,23441	0,57384	0,40849	0,684080						

ii. Tester l'hypothèse "Tous les coefficients $b_j, j = 1, ..., 8$ "' sont nuls.

 $F = \frac{R^2}{1-R^2} \frac{n-p-1}{p}$, on rejette la nullité de tous les coefficients iii. Tester individuellement la nullité des paramètres $b_j, j = 0, ..., 8$.

on rejette la nullité de $b_0, b_1, b_2, b_3, b_4, b_4$, on accepte la nullité $b_5, b_6, b_7, b_8, t(75), 75 = 84 - 8 - 1$

Que peut-on conclure ? En choississant le modèle restreint, que vaut le coefficient R^2 de ce nouveau modèle ?

 $R^2 = 0,7574$ avec modèle complet, nouveau modèle avec les 4 VI (variables 1,2,3,6), $R^2 = 0,742$, on ne perd pas grand chose.

Utiliser le menu Statistiques / Régression multiple

📈 Régression Linéaire Multiple : image-corpo	orelle 🛛 🔁 🗾 🔀
Base Avancé	E OK
🗩 Variables	Annuler
Dépendante(s) : EDICOMP Indépendantes : 1-3-6	🔈 Options 🔻
Fichier d'entrée : Données brutes	🗁 O <u>u</u> vrir
🔲 Options avancées (régression ridge ou pas-à-pas)	SELECT S D
🔲 Statistiques descriptives, matrice de corrélations	🗖 Moments pondérés
🦳 Calculs en précision étendue	- DL =
Traitement/reporting par lots	© P-1 © N-1
Impression/rapport de l'analyse des résidus	Traitement des VM
Spécifiez toutes les variables à inclure dans l'analyse ; vous pourrez spécifier d'autres modèles (variables indép./dép.) ultérieurement. Pour une régression pas-à-pas, etc cochez les Options avancées.	 Obs. ignorée Cellule ignorée Remplacement
Voir aussi le module Modèles Généraux de Régression (GRM).	par la moyenne

Taper OK

	? _ 🔀								
Résultats Régress. Multiple									
Var dép. : EDICOMP R Multiple = ,86139122 F = 56,7 R ⁴ = .74199483 dl = 4.	9885 79								
Nb d'obs. : 84 R ^s ajusté = ,72893127 p = 0,00 Erreur-type de l'estim. : 9,110989076	0000								
Ord.Orig : 78,202958968 ErrType: 6,997444 t(79) = 11,176	p = ,0000								
SAWBS bêta=,285 WTPERCEP bêta=-,18 SHPERCEP bê RSES bêta=-,38	ta=-,30								
(bêta significatifs en surbrillance)	Ē <u>}</u> ★								
(bêta significatifs en surbrillance) Alpha pour la mise en surbrillance des effets : 05	tan an a								
(bêta significatifs en surbrillance) Alpha pour la mise en surbrillance des effets : 05 Base Avancé Résidus/hypothèses/prévisions	B ★								
(bêta significatifs en surbrillance) Alpha pour la mise en surbrillance des effets : Base Avancé Résidus/hypothèses/prévisions Image: Synthèse : Résultats de la régression Image: Synthèse : Résultats de la régression	L ± OK Annuler ▲ Options ▼								
(bêta significatifs en surbrillance) Alpha pour la mise en surbrillance des effets : ,05 Base Avancé Résidus/hypothèses/prévisions Image: Synthèse : Résultats de la régression Image: Corrélations partielles Image: ANOVA (qualité globale d'ajustement) Image: Redondance	L ± OK Annuler ▶ Options ▼								
(bêta significatifs en surbrillance) Alpha pour la mise en surbrillance des effets : ,05 Base Avancé Résidus/hypothèses/prévisions Image: Synthèse : Résultats de la régression Corrélations partielles Image: ANOVA (qualité globale d'ajustement) Image: Bedondance Image: Covariance des coefficients Synthèse de la régression pas-à-pas	L ± OK Annuler								

iv. Etudier la redondance des variables.

Utiliser le menu Statistiques / Régression multiple							
ZRégression Linéaire Multiple : image-corpo	orelle 🛛 🗧 🚺						
Base Avancé							
🖳 Variables	Annuler						
Dépendante(s) : EDICOMP Indépendantes : 1-3 6-10	Doptions -						
Fichier d'entrée : Données brutes							
Options avancées (régression ridge ou pas-à-pas)							
Statistiques descriptives, matrice de corrélations	🔲 Moments pondérés						
Calculs en précision étendue	_ DL =						
Traitement/reporting par lots	© P-1 O N-1						
Impression/rapport de l'analyse des résidus	_ Traitement des VM _						
Spécifiez toutes les variables à inclure dans l'analyse ; vous pourrez spécifier d'autres modèles (variables indép./dép.) ultérieurement. Pour une régression pas-à-pas, etc cochez les Options avancées.	 Obs. ignorée Cellule ignorée Remplacement 						
Voir aussi le module Modèles Généraux de Régression (GRM).	par la moyenne						

Taper OK

Resultats de la Regression Multiple : Image	e-corporelle 🛛 🤶 🚬 🔀								
Régultats Régress Multiple									
Var dép. : EDICOMP R Multiple	e = ,87026299 F = 29,26212								
R ^s = ,75735768 dl = 8,75									
Nb d'obs. : 84 R ^s ajusté	e = ,73147583 p = 0,000000								
Ord Orig : 69 242496885 Frr -Tupe: 16	39961 + (75) = 37633 = 0003								
	, 35561 C(73) = 3,7633 p = ,0003								
SAWBS bêta=,265 WTPERCEP	bêta=-,21 SHPERCEP bêta=-,27								
RSES bêta=-,24 BDI	bêta=,196 BMI bêta=-,05								
SES bêta=-,02 SOCDESIR	bêta=,027								
(bêta significatifs en surbrillance)	(hêta significatifs en surbrillance)								
Bat									
·	Eb ±								
Áloha pour la mise en surbrillance des effets : 05 🔺									
Alpha pour la mise en surbrillance des effets : 05	₽ ±								
Alpha pour la mise en surbrillance des effets : 05	<mark>₪ ±</mark> Annuler								
Alpha pour la mise en surbrillance des effets : 05	<mark>₪ ±</mark> Annuler								
Alpha pour la mise en surbrillance des effets : ,05 🖨 Base Avancé Résidus/hypothèses/prévisions	Est Corrélations gartielles								
Alpha pour la mise en surbrillance des effets : ,05 🖨 Base Avancé Résidus/hypothèses/prévisions Synthèse : Résultats de la régression	Es ★ OK Annuler Corrélations gartielles Options ▼								
Alpha pour la mise en surbrillance des effets : ,05 Base Avancé Résidus/hypothèses/prévisions Image: Synthèse : Résultats de la régression Image: Anova (qualité globale d'ajustement)	E OK Annuler Corrélations partielles <u>R</u> edondance								
Alpha pour la mise en surbrillance des effets : ,05 Base Avancé Résidus/hypothèses/prévisions Image: Synthèse : Résultats de la régression Image: Synthèse : Image: ANOVA (qualité globale d'ajustement) Image: Synthèse : Image: Synthèse : Image: ANOVA (qualité globale d'ajustement) Image: Synthèse : Image: Synthèse : Image: Coyariance des coefficients Image: Synthese : Image: Synthèse :	Ledondance Implementations partielles Redondance Implementations partielles Implementations of the second sec								
Alpha pour la mise en surbrillance des effets : ,05 Base Avancé Résidus/hypothèses/prévisions Base Avancé Résidus/hypothèses/prévisions Image: Synthèse : Résultats de la régression Image: Synthèse : Image: ANOVA (qualité globale d'ajustement) Image: Synthèse : Image: Synthèse : Image: Covariance des coefficients Image: Synthèse : Image: Synthèse : Image: Matrice sweep courante Image: Synthèse : Image: Synthèse :	Endondance Endondance iynthèse de la régression pas-à-pas								

Cliquer sur redondance

	Redondance des var. indépendantes ; VD: EDICOMP (image-corporelle) La colonne R ² contient les R ² des variables respectives avec toutes les autres variables indépendantes											
	Toléran.	Toléran. R ² Corrél. Corrél.										
Variable	Partiel. Semipart											
SAWBS	0,748607	0,251393	0,422423	0,229568								
WTPERCEP	0,364948	0,635052	-0,249406	-0,126863								
SHPERCEP	0,528861	0,471139	-0,366109	-0,193796								
RSES	0,363259	0,636741	-0,282262	-0,144932								
BDI	0,298393 0,701607 0,212543 0,107144											
BMI	0,564454	0,435546	-0,079677	-0,039373								
SES	0,888614	0,111386	-0,031859	-0,015701								
SOCDESIR	0,751941	0,248059	0,047116	0,023234								

Tolérance : $1-R^2$, si en dessous de 0,1, variable redondante, c'est à dire que par rapport aux autres, elle n'apporte rien, elle est fortement corrélée avec l'une ou combinaison des autres. Pour la corrélation partielle, on retire l'influence des autres. La plus petite est 0,29, pour la corrélation partielle, c'est bon pour les 4 premières variables, cela confirme ce qu'on a vu précédemment

v. Analyse des résidus du modèle complet.

 $\label{eq:utiliser} \mbox{Utiliser le menu Statistiques / Régression multiple / Résidus , hypothèses , prévision / Analyse des résidus }$

Cliquer sur base puis droite de Henry

📈 Analyse des Résidus : image-corporelle	? _ 🔀
Var dép. : EDICOMP R Multiple : ,87026299 F = 29,26212 R ^s : ,75735768 dl = 8,75 Nbre d'obs. : 84 R ^s ajusté : ,73147583 p = 0,000000 Erreur-type de l'estim.: 9,068125178 Ord.Orig : 69,242496885 Err-Type : 18,39961 t(75) = 3,7633 p	< ,0003
Base Avancé Résidus Prévues Nuages Tracés de probas Atypiques Enregistrer Image: Structure Image: Str	Annuler

Utiliser le menu Statistiques / Régression multiple / Résidus, hypothèses, prévision / Analyse des résidus / Nuages / valeurs prévues vs résidus

📈 Analyse des Résidus : image-corporelle	? _ 🔀
Var dép. : EDICOMP R Multiple : ,87026299 F = 29,26212 R ⁴ : ,75735768 dl = 8,75 Nbre d'obs. : 84 R ⁴ ajusté : ,73147583 p = 0,000000 Erreur-type de l'estim.: 9,068125178 Ord.Orig : 69,242496885 Err-Type : 18,39961 t(75) = 3,7633 p	o < ,0003
Base Avancé Résidus Prévues Nuages Tracés de probas Atypiques Enregistrer Image: Valeurs grévues vs. résidus Image: Valeurs grévues vs. résidus	Annuler
Valeurs prévues vs. résidus <u>c</u> arrés <u>R</u> ésidus vs. résidus supprimés	🔈 Options 🔻
Valeurs prévues vs. obser <u>v</u> ées Corrélation bivariée	
Valeurs o <u>b</u> servées vs. résidus	

 $\label{eq:utiliser} Utiliser le menu \ Statistiques \ / \ Régression \ multiple \ / \ Résidus, \ hypothèses \ , \ prévision \ / \ Analyse \ des \ résidus \ / \ Nuages$

 $\label{eq:tilde} Utiliser le menu \ Statistiques \ / \ Régression \ multiple \ / \ Résidus, \ hypothèses \ , \ prévision \ / \ Analyse \ des \ résidus \ / \ Atypique$

🗭 Analyse des Résidus : image-corporelle	? _ 🔀
Var dép. : EDICOMP R Multiple : ,87026299 F = 29,26212 R ^s : ,75735768 dl = 8,75 Nbre d'obs. : 84 R ^s ajusté : ,73147583 p = 0,000000 Erreur-type de l'estim.: 9,068125178 Ord.Orig : 69,242496885 Err-Type : 18,39961 t(75) = 3,7633	p < ,0003
Base Avancé Résidus Prévues Nuages Tracés de probas Atypiques Enregistrer Image: Tracé des points atypiques (par obs.) Type de point atypique Type de point atypique Type de point atypique Image: Tracé des points atypiques (par obs.) Type de point atypique Type de point atypique Image: Tracé des points atypiques (par obs.) Type de point atypique Tracer les 100 obs. les plus extrêmes : Image: Valeurs prévues standard Valeurs prévues standard Tistances de Mahalanobis Tistances de Mahalanobis Image: Tracé des points atypiques (par obs.) Tracer les 100 obs. les plus extrêmes : Tistances de Mahalanobis	Annuler

										Résidus Sta	andard : El	DICOMP (i	mage-corpo	relle)	
										Pts Atypiqu	les				
Résidus Standard										Valeur	Valeur	Résidus	Standard	Standard	Err.Type
Obs.	-5		-4.	-3.	±2		з.	4.	5.	Observée	Prévue		Val.Prév	Résidus	Val.Prév
	33				*			1.		-12,6700	9,97345	-22,6435	-0,82254	-2,49704	2,373859
	41					*	•			17,6800	35,95903	-18,2790	0,88376	-2,01574	2,760483
	59					•*	•			22,6100	2,94928	19,6607	-1,28378	2,16811	3,176330
Minim	um				*		•			-12,6700	2,94928	-22,6435	-1,28378	-2,49704	2,373859
Maxim	um					•*	•			22,6100	35,95903	19,6607	0,88376	2,16811	3,176330
Moyen	ne					.*		•		9,2067	16,29392	-7,0873	-0,40752	-0,78156	2,770224
Média	ne		•	•		*	•	•	•	17,6800	9,97345	-18,2790	-0,82254	-2,01574	2,760483

vi. Suppression de variables : méthode pas à pas.

Donner le modèle retenu par la méthode ascendante et vérifier sa qualité.

Utiliser le menu Statistiques / Régression multiple) cocher options avancées : (régression ridge ou pas à pas)

🖉 Régression Linéaire Multiple : image-corpo	orelle 🤶 🗕 🔀
Base Avancé	CK OK
🗩 Variables	Annuler
Dépendante(s) : EDICOMP Indépendantes : 1-3 6-10	Doptions -
Fichier d'entrée : Données brutes	🗁 O <u>u</u> vrir
Options avancées (régression ridge ou pas-à-pas)	
🔲 Statistiques descriptives, matrice de corrélations	🗖 Moments pondérés
🔲 Calculs en précision étendue	_ DL =
Traitement/reporting par lots	© P-1 © N-1
Impression/rapport de l'analyse des résidus	Traitement des VM
Spécifiez toutes les variables à inclure dans l'analyse ; vous pourrez spécifier d'autres modèles (variables indép./dép.) ultérieurement. Pour une régression pas-à-pas, etc cochez les Options avancées.	 Obs. ignorée Cellule ignorée Remplacement
Voir aussi le module Modèles Généraux de Régression (GRM).	par la moyenne

Cliquer sur OK. Dans le menu pas à pas, sélectionner

🔀 Définition du Modèle : image-corporelle	? _ 🔀
Base Avancé Pas-à-pas Descriptives	
Méthode : Pas-à-pas ascendante 💌	Annuler
F d'inclusion : 1,00	▶ Options ▼
F d'exclusion : 0,	
Nombre d'étapes : 12	
Affichage résultats : A chaque étape	

📈 Résultats de la Régression Multiple : image-corporelle	? _ 🔀
Résultats Régress. Multiple (Etape 0) Var dép. : EDICOMP R Multiple = 0,00000000 F = 0,000 R ^s = 0,00000000 dl = 0,8 Nb d'obs. : 84 R ^s ajusté = 0,00000000 p = -0,00 Erreur-type de l'estim. :17,499507153	0000 33 0000
Etape 0 : Aucune variable dans l'équation (bêta significatifs en surbrillance)	Ba ±
Alpha pour la mise en surbrillance des effets : .05 Base Avancé Résidus/hypothèses/prévisions Image: Analyse des résidus Valeurs prévues Image: Statistiques descriptives ? Prévoir les valeurs de la variable dépendante Image: Statistiques descriptives ? Prévoir les valeurs de la variable dépendante Image: Générateur de gode ▼ Image: Calculer les limites de confiance Alpha : .05	Annuler

Ma Resultats de la Regressio	in multiple : image-corporette	
Résultats Régress. Mu	ltiple (Etape 1)	
Var dép. : EDICOMP	R Multiple = ,71122922 F	= 83,94051
Nb d'obs. : 84	R ^s ajusté = ,49982074 p	= ,000000
Erreur-	type de l'estim. :12,376238121	
Ord.Orig : 4,35088128	3 ErrType: 2,397418 t(82) = 3	1,8148 p = ,0'
BDI bêta=,71	1	
(bâta significatifs on	surbrillance)	
(bêta significatifs en	surbrillance)	
(bêta significatifs en Alpha pour la mise en surbrillance d	surbrillance)	E Su
(bêta significatifs en Alpha pour la mise en surbrillance d	surbrillance) es effets : .05	E Su
(bêta significatifs en Alpha pour la mise en surbrillance d Base Avancé Résidus/hypol	surbrillance) es effets : 05	E Su Annu
(bêta significatifs en Alpha pour la mise en surbrillance d Base Avancé Résidus/hypol	surbrillance) es effets : 05	Annul
(bêta significatifs en Alpha pour la mise en surbrillance d Base Avancé Résidus/hypol	surbrillance) es effets : 05 ਦ thèses/prévisions Valeurs prévues 20 Prévoir les valeurs de la variable dépendant	Annu nte
(bêta significatifs en Alpha pour la mise en surbrillance d Base Avancé Résidus/hypol Analyse des résidus	surbrillance) es effets : 05 thèses/prévisions Valeurs prévues ? Prévoir les valeurs de la variable dépendant	nte
(bêta significatifs en Alpha pour la mise en surbrillance d Base Avancé Résidus/hypol Analyse des résidus Statistiques <u>d</u> escriptives	surbrillance) es effets : 05 thèses/prévisions Valeurs prévues ? Prévoir les valeurs de la variable dépendan Calculer les limites de confiance	nte
(bêta significatifs en Alpha pour la mise en surbrillance d Base Avancé Résidus/hypot Analyse des résidus Statistiques <u>d</u> escriptives Générateur de <u>c</u> ode V	surbrillance) es effets : 05 thèses/prévisions Valeurs prévues Prévoir les valeurs de la variable dépendan Calculer les limites de confiance Calculer les limites de prévision Alpha : 05	Annu nte
(bêta significatifs en Alpha pour la mise en surbrillance d Base Avancé Résidus/hypot Analyse des résidus Statistiques <u>d</u> escriptives Générateur de <u>c</u> ode v	surbrillance) es effets : thèses/prévisions Valeurs prévues Prévoir les valeurs de la variable dépendan Calculer les limites de confiance Calculer les limites de prévision Alpha :	nte

📈 Analyse des Résidus : image-corporelle	? _ 🔀
Var dép. : EDICOMP R Multiple : ,86909766 F = 48,15954 R ^{\$} : ,75533074 dl = 5,78 Nbre d'obs. : 84 R ^{\$} ajusté : ,73964681 p = 0,000000 Erreur-type de l'estim.: 8,929091356 Ord.Orig : 60,102127899 Err-Type : 11,13975 t(78) = 5,3953 p	< ,0000 B
Base Avancé Résidus Prévues Nuages Tracés de probas Atypiques Enregistrer Image: Synthèse : Résidus & prévisions Image: Im	Annuler

On garde le modèle avec 5 VI : 1-5

Donner le modèle retenu par la méthode descendante et vérifier sa qualité.

Utiliser le menu Statistiques / Régression multiple) cocher options avancées : (régression ridge ou pas à pas)

🗾 Définition du Modèle : image-corporelle	? _ 🔀
Base Avancé Pas-à-pas Descriptives	E OK
Méthode : Pas-à-pas descendante 💌	Annuler
F d'inclusion : 11,00	🔈 Options 🔻
F d'exclusion : 10,00	
Nombre d'étapes : 12	
Affichage résultats : A chaque étape	

Cliquer sur OK. Dans le menu pas à pas, sélectionner

📈 Résultats de la Régression Multiple : image-corporelle	? _ 🔀
Résultats Régress. Multiple (Etape 1)	
Var dép. : EDICOMP R Multiple = ,87012134 F = 33,8 R ^s = ,75711115 dl = 7,	4290 76
Nb d'obs. : 84 R ^s ajusté = ,73473981 p = 0,00 Erreur-type de l'estim. : 9,012844051 Ord.Orig : 68,074160014 ErrType: 17,79706 t(76) = 3,8250	00000 p = ,0003
SAWBS bêta=,266 WTPERCEP bêta=-,21 SHPERCEP bê RSES bêta=-,24 BDI bêta=,201 BMI bê SOCDESIR bêta=,024	ta=-,27 ita=-,05
(bêta significatifs en surbrillance)	<u></u>
Alpha pour la mise en surbrillance des effets : 🛛 💭 🚔	📰 (Suivant)
Base Avancé Résidus/hypothèses/prévisions	Annuler
Analyse des résidus	> Options ▼
Statistiques descriptives	
Générateur de code Calculer les limites de confiance Alpha : .05	

Mesultats de la regression multiple : inage-corporene	? _ 🔀
Résultats Régress. Multiple (étape 5, sol. finale) pas d'autre F d'exclusion inf. au seuil spécifié Var dép. : EDICOMP R Multiple = ,84905386 F = 68,87 R ^{fe} ,72089245 dl = 3,8 Nb d'obs. : 84 R ^f ajusté = ,71042592 p = 0,000 Erreur-type de l'estim. : 9,416850229 Ord.Orig : 69,732448796 ErrType: 6,359607 t(80) = 10,965	2595 10 10000 p = ,0000
SAWBS bêta=,317 SHPERCEP bêta=-,38 RSES bêt	a=-,40
(bêta significatifs en surbrillance)	₽ <u></u> ±
(bêta significatifs en surbrillance) Alpha pour la mise en surbrillance des effets : 05	<u>⊾</u> ±
(bêta significatifs en surbrillance) Alpha pour la mise en surbrillance des effets : 05 🛓 Base Avancé Résidus/hypothèses/prévisions	Le t

On garde le modèle avec 3 VI : 1,2,4