Le modèle linéaire généralisé (logit, probit, ...) Master 2 Recherche SES-IES Analyse de données

Ana Karina Fermin

Université Paris-Ouest-Nanterre-La Défense

http://fermin.perso.math.cnrs.fr/

- Modèle de régression logistique

•000000

Objectif.

Modèle

On souhaite "expliquer" une variable réponse Y par une variable explicative X (ou plusieurs variables explicatives X_1, X_2, \ldots, X_p) lorsque Y est 0 (échec) ou 1 (succès).

Exemples:

- Médecine : Y vaut 1 si le patient atteint la maladie, 0 sinon.
 La variable X est l'âge.
- Banque: Y vaut 1 si le client fait défaut sur sa dette. La variable X est par exemple l'âge, la profession, le montant moyen mensuel d'utilisation de la carte de crédit, le revenu du client,..., etc.
- Sociologie: Y vaut 1 si le fils est cadre, 0 sinon. La variable
 X est par exemple le niveau d'éducation du père.,

Modélisation (cas multiple avec p variables)

La loi de Y est déterminée par

$$\pi(X) = P(Y = 1 | X_1, X_2, \dots, X_p)$$

Nous supposons $\pi(X) = F(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p)$, où F est une fonction de répartition inversible donnée avec $\beta_0, \beta_1, \dots, \beta_p$ inconnus. En pratique les coefficients $\beta_0, \beta_1, \dots, \beta_p$ doivent être déterminés à partir des données.

Modèle théorique

$$Y = F(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p) + \varepsilon,$$

où le bruit ε est une variable aléatoire centrée.

Fermin

Modèle

0000000

Estimation

- En pratique, les coefficients $\beta_0, \beta_1, \dots, \beta_p$ doivent être déterminés à l'aide des données.
- On utilise la méthode du Maximum de Vraisemblance (MV).
- En général la méthode de MV fournit des estimateurs avec des bonnes propriétés statistiques.

Commençons par définir la fonction log-vraisemblance associée au modèle logit et probit

log-Vraisemblance

Modèle

$$\text{LV}(\beta) = \sum_{i=1}^{n} Y_i \log(F(X_i)) + (1 - Y_i) \log(1 - F(X_i))$$

avec $\beta = (\beta_0, \beta_1, \dots, \beta_p)$.

Les logiciels de statistiques calculent la fonction LV(β) et cherchent les coefficients $\beta_0, \beta_1, \dots, \beta_p$ que maximisent cette fonction à l'aide d'un algorithme itérative.

Dans ce cours on va juste utiliser et interpréter les résultats donnés par le logiciel R (vous n'avez pas besoin de connaître les résultats théoriques de la log-vraissemblance associée au modèle) !!!

Notre objectif est modéliser

$$\pi(X) = P(Y = 1 | X_1, X_2, \dots, X_p)$$

Modèle théorique

Modèle

$$Y = \pi(X) + \varepsilon$$
,

où $\pi(x) = F(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p)$ et ε est centrée.

Exemples de fonctions F:

- logit : F est la fonction de répartition de la loi logistique.
- probit : F est la fonction de répartition de la loi Gaussienne standard.

Régression logistique

Modèle

0000000

Fonction de répartition de la loi logistique

On parle de régression logit ou logistique lorsque pour tout $t \in \mathbb{R}$,

$$F(t) = \frac{\exp(t)}{1 + \exp(t)}.$$

$$\pi(x) = \frac{\exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)}{1 + \exp(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p)}$$
$$\log\left(\frac{\pi(x)}{1 - \pi(x)}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

- 1 Modèle de régression logistique
- 2 Cotes et rapports de cotes
- 3 Données groupées
- 4 Références

Cotes (odds) et rapports de cotes (odds ratios)

Dans le cas où la variable réponse Y est à valeurs dans $\{0,1\}$ et $x = (x_1, x_2, \dots, x_n)$, on définit :

La cote :
$$C(x) = \frac{\pi(x)}{1 - \pi(x)}$$
.

Le rapport de cotes :
$$OR = \frac{C(x')}{C(x)}$$
.

Cas de la régression logistique simple avec X qualitative

Cas Simple: Supposons qu'on dispose d'une unique variable explicative X de type qualitative à deux modalités $\{0,1\}$. Nous avons fait un exemple à la main à l'aide d'un tableau de contingence pour les données de la mobilité sociale (voir vos notes de CM).

Si l'on suppose que

$$\pi(x) = \frac{\exp(\beta_0 + \beta_1 x_1)}{1 + \exp(\beta_0 + \beta_1 x_1)}$$

on a alors

Modèle

$$\log\left(\frac{\pi(x)}{1-\pi(x)}\right) = \beta_0 + \beta_1 x_1$$

avec β_0 et β_1 inconnus.

$$\widehat{\beta}_0 = log(C(0))$$
 et $\widehat{\beta}_1 = log(C(1)/C(0)) = log(OR)$

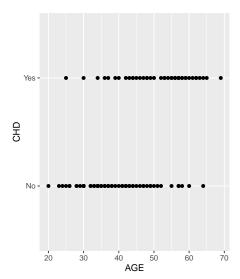
Fermin

Exemple 2 (cf. Ricco Rakotomalala)

On étudie la variable binaire CHD qui prend la valeur 1 si présence d'un problème cardiaque et 0 si absence. On souhait étudier la relation entre CHD et la variable explicative âge (AGE)

Le fichier maladie_cardiovasculaire.txt comporte 100 lignes, dont les cinq premières sont :

```
> head(maladie,5)
  TD AGRP AGE CHD
          20
       1 23
       1 24
       1 25
5
          25
```



- Données groupées

Données groupées

Modèle

Supposons que l'on ait K groupes, i.e. seulement K valeurs possibles pour la de variable explicative X, et que pour chaque groupe k, k = 1, ..., K, on dispose de n_k observations. Ainsi,

$$P(Y_{kj} = 1 | X_k = x_k) = \pi(x_k), j \in \{1, \ldots, n_k\}.$$

On dit dans ce cas que les données sont groupées. Sinon, on dit que les données sont individuelles

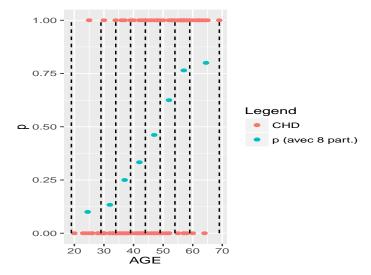
Remarque: On peut ramener des données individuelles au cas de données groupées en segmentant selon les variables explicatives.

Retour à l'exemple 2

Modèle

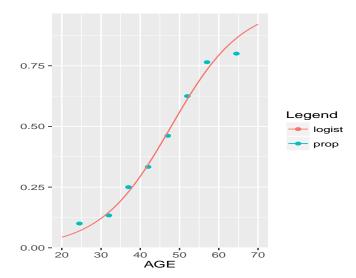
Le tableau suivant donne c_k le centre de chaque classe d'age, n_k le nombre de patients selon la classe d'age, la proportion de malades selon la classe d'age $\pi_k = n_k [CHD = 1]/n_k,$

Age_k	Ck	n _k	$n_k[CHD=0]$	$n_k[CHD=1]$	π_k
[20,29]	24.5	10	9	1	0.10
[30,34]	32	15	13	2	0.13
[35,39]	37	12	9	3	0.25
[40,44]	42	15	10	5	0.33
[45,49]	47	13	7	6	0.46
[50,54]	52	8	3	5	0.63
[55,59]	57	17	4	13	0.76
[60,69]	64.5	10	2	8	0.80



Retour à l'exemple 2 : Extrait de sorties R

```
> CHD.logit = glm(CHD~AGE, family=binomial(link="logit"))
> summary(CHD.logit)
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
AGE
      0.11092 0.02406 4.610 4.02e-06 ***
   Null deviance: 136.66 on 99 degrees of freedom
Residual deviance: 107.35 on 98 degrees of freedom
ATC: 111.35
Number of Fisher Scoring iterations: 4
```



Exemple 3 (cf. RIII)

Modèle

Nous traitons un problème de défaut bancaire. Nous cherchons à déterminer quels clients seront en défaut sur leur dette de carte de crédit (ici $\mathtt{defaut} = 1$ si le client fait défaut sur sa dette). La variable \mathtt{defaut} est la variable réponse.

Nous disposons d'un échantillon de taille 10000 et 3 variables explicatives

- student: variable qualitative à 2 niveaux (student et non-student)
- balance: montant moyen mensuel d'utilisation de la carte de crédit
- income: revenu du client

```
Coefficients:
```

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.075e+01 3.692e-01 -29.116 < 2e-16 ***
student
           -7.149e-01 1.475e-01 -4.846 1.26e-06 ***
balance 5.738e-03 2.318e-04 24.750 < 2e-16 ***
              0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '
Signif. codes:
```

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2920.6 on 9999 degrees of freedom Residual deviance: 1571.7 on 9997 degrees of freedom ATC: 1577.7

Rappelons qu'on dispose d'un échantillon de taille n = 10000

- A Références

Références :

- An introduction to Generalized Linear Models, A.J. Dobson (2002)
- Statistiques avec ℝ, Pierre-André Cornillon et al. (2010), Presses universitaires de Rennes.
- Applied econometrics with R, Christian Kleiber et Achim Zeileis (2011), Springer.