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IntroductionMachine Learning
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A definition by Tom Mitchell
(http://www.cs.cmu.edu/~tom/)
A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T , as measured by P, improves with
experience E.

http://www.cs.cmu.edu/~tom/
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Credit Score
Task: Prediction (default or no default)
Data: Client profile, Client credit history...
Performance measure: error rate.



IntroductionNews Clustering

So
ur

ce
:

th
ev

er
ge

.c
om

A news clustering algorithm:
Task: group articles corresponding to the same news
Performance: quality of the clusters
Experience: set of articles



IntroductionSupervised and Unsupervised
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Supervised Learning (Imitation)
Goal: Learn a function f predicting a variable Y from an
individual X .
Data: Learning set with labeled examples (X i ,Yi )
Assumption: Future data behaves as past data!
Predicting is not explaining!

Unsupervised Learning (Structure Discovery)
Goal: Discover a structure within a set of individuals (X i ).
Data: Learning set with unlabeled examples (X i )
Unsupervised learning is not a well-posed setting....



IntroductionA Robot that Learns
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A robot endowed with a set of sensors playing football:
Task: play football
Performance: score evolution
Experience:

current environment and outcome,
past games



IntroductionThree Kinds of Learning
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Unsupervised Learning
Task:
Clustering/DR
Performance:
Quality
Experience:
Raw dataset
(No Ground Truth)

Supervised Learning
Task:
Prediction
Performance:
Average error
Experience:
Predictions
(Ground Truth)

Reinforcement Learning
Task:
Action
Performance:
Total reward
Experience:
Reward from env.
(Interact. with env.)



IntroductionMachine Learning
(Unsupervised/Supervised)
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Huge catalog of methods,
Need to define the performance, feature design.
Here, we will only see supervised learning
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Credit Score
Task: Prediction (default or no default)
Data: Client profile, Client credit history...
Performance measure: error rate.



IntroductionSpam detection (Text classification)
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Spam detection
Task: Prediction (spam or no spam)
Data: email collection
Performance measure: error rate.



IntroductionDetection
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Face detection
Task: Detect the position of faces in an image
Different setting?
Reformulation as a supervised learning problem.
Goal: Detect the presence of faces at several positions and
scales.
Data: X = sub image / Y = presence or no of a face...
Performance measure: error rate.
Lots of detections in an image: post processing required...
Performance measure: box precision.



IntroductionNumber
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Reading a ZIP code on an envelop
Task: give a number from an image.
Data: X = image / Y = corresponding number.
Performance measure: error rate.
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Height estimation
Simple (and classical) dataset.
Task: predict the height from circumference.
Data: X = circumference / Y = height.
Performance measure: means squared error.



IntroductionUnder and Over Fitting
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Finding the Right Complexity
What is best?

A simple model that is stable but false? (oversimplification)
A very complex model that could be correct but is unstable?
(conspiracy theory)

Neither of them: tradeoff that depends on the dataset.



IntroductionML Pipeline
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Test and compare models.

Deployment pipeline is different!



IntroductionIFMA/IMP Bloc 3 ML - Goal

Goal
Know the inner mechanism of the most classical supervised
ML methods (Logistic, SVM, Neural Nets and Trees) in
order to understand their strengths and limitations.
Understand some optimization tools used in ML

Evaluation
A project (homework) with R



IntroductionSchedule

IFMA/IMP Bloc 3 ML - 5 Lectures (09h00-12h15)
Fri. 15/01: Statistical Learning: Introduction and Cross
Validation
Tue. 19/01: ML Methods: Probabilistic Point of View
Tue. 26/01: ML Methods: Optimization Point of View
Tue. 02/02: ML Methods: SVM
Tue. 09/02: ML Methods: Trees and Ensemble Methods,
Neural Networks, etc

12/03: Homework (project with 2-3 students)



12/03: Homework (project with 2-3 students)
For this homework :

You will have to build a good predictor from a dataset that I
will give you.
The goal is not necessarily to obtain the best performance but
to perform the work of a good data scientist.
You need to describe the task and the dataset using descriptive
statistics and graphics.
You should explain how you have obtained your best predictor
both in term of strategy and error estimation.
You are expected to describe the strength and the limitation of
your approach and to propose some possible enhancements.
You may use R or Python. If you a use a notebook, please
provide a compiled version.
The report should consists of around 20-30 pages and is much
more than a code listing.
Originality of the work will be taken into account and any
plagiarism will be sanctioned.
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Supervised LearningSupervised Learning

Supervised Learning Framework
Input measurement X ∈ X
Output measurement Y ∈ Y.
(X ,Y ) ∼ P with P unknown.
Training data : Dn = {(X 1,Y1), . . . , (Xn,Yn)} (i.i.d. ∼ P)

Often
X ∈ Rd and Y ∈ {−1, 1} (classification)
or X ∈ Rd and Y ∈ R (regression).

A predictor is a function in F = {f : X → Y meas.}

Goal
Construct a good predictor f̂ from the training data.

Need to specify the meaning of good.
Classification and regression are almost the same problem!



Supervised LearningLoss and Probabilistic Framework

Loss function for a generic predictor
Loss function: `(Y , f (X )) measures the goodness of the
prediction of Y by f (X )
Examples:

Prediction loss: `(Y , f (X )) = 1Y 6=f (X)
Quadratic loss: `(Y , f (X )) = |Y − f (X )|2

Risk function
Risk measured as the average loss for a new couple:

R(f ) = E(X,Y )∼P [`(Y , f (X))]
Examples:

Prediction loss: E [`(Y , f (X ))] = P (Y 6= f (X ))
Quadratic loss: E [`(Y , f (X ))] = E

[
|Y − f (X )|2

]
Beware: As f̂ depends on Dn, R(f̂ ) is a random variable!



Supervised LearningBest Solution

The best solution f ∗ (which is independent of Dn) is
f ∗ = arg min

f ∈F
R(f ) = arg min

f ∈F
E [`(Y , f (X ))] = arg min

f ∈F
EX

[
EY |X [`(Y , f (X ))]

]
Bayes Predictor (explicit solution)

In binary classification with 0− 1 loss:

f ∗(X ) =


+1 if P (Y = +1|X ) ≥ P (Y = −1|X )

⇔ P (Y = +1|X ) ≥ 1/2
−1 otherwise

In regression with the quadratic loss
f ∗(X ) = E [Y |X ]

Issue: Solution requires to know E [Y |X ] for all values of X !



Supervised LearningGoal
Machine Learning

Learn a rule to construct a predictor f̂ ∈ F from the training
data Dn s.t. the risk R(f̂ ) is small on average or with high
probability with respect to Dn.

In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the
minimization of the empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

`(Yi , fθ(X i ))

Examples:
Linear regression
Linear discrimination with

S = {x 7→ sign{x>β + β(0)} /β ∈ Rd , β(0) ∈ R}



Supervised LearningEucalyptus
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Height estimation
Simple (and classical) dataset.
Task: predict the height from circumference.
Data: X = circumference / Y = height.
Performance measure: means squared error.



Supervised LearningEucalyptus
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Dataset - P.A. Cornillon
Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

X : circumference / Y: height

Can we predict the height from the circumference?

by a line? by a more complex formula?
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Dataset - P.A. Cornillon
Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

X : circumference / Y: height

Can we predict the height from the circumference?
by a line?

by a more complex formula?



Supervised LearningEucalyptus
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Dataset - P.A. Cornillon
Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:

X : circumference / Y: height

Can we predict the height from the circumference?
by a line? by a more complex formula?



Supervised LearningUnder-fitting / Over-fitting Issue
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Model Complexity Dilemna
What is best a simple or a complex model?
Too simple to be good? Too complex to be learned?



Supervised LearningUnder-fitting / Over-fitting Issue
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Under-fitting / Over-fitting
Under-fitting: simple model are too simple.
Over-fitting: complex model are too specific to the training
set.



Supervised LearningBias-Variance Dilemma

General setting:
F = {measurable functions X → Y}
Best solution: f ∗ = argminf∈F R(f )
Class S ⊂ F of functions
Ideal target in S: f ∗S = argminf∈S R(f )
Estimate in S: f̂S obtained with some procedure

Approximation error and estimation error (Bias/Variance)

R(f̂S)−R(f ∗) = R(f ∗S )−R(f ∗)︸ ︷︷ ︸
Approximation error

+R(f̂S)−R(f ∗S )︸ ︷︷ ︸
Estimation error

Approx. error can be large if the model S is not suitable.
Estimation error can be large if the model is complex.

Agnostic approach
No assumption (so far) on the law of (X ,Y ).



Supervised LearningUnder-fitting / Over-fitting Issue

So
ur

ce
:

U
nk

no
w

n

Different behavior for different model complexity
Low complexity model are easily learned but the
approximation error (bias) may be large (Under-fit).
High complexity model may contain a good ideal target but
the estimation error (variance) can be large (Over-fit)

Bias-variance trade-off ⇐⇒ avoid overfitting and underfitting

Rk: Better to think in term of method (including feature
engineering and specific algorithm) rather than only of model.



Supervised LearningTheoretical Analysis

Statistical Learning Analysis
Error decomposition:

R(f̂S)−R(f ?) = R(f ?S )−R(f ?)︸ ︷︷ ︸
Approximation error

+R(f̂S)−R(f ?S )︸ ︷︷ ︸
Estimation error

Bound on the approximation term: approximation theory.
Probabilistic bound on the estimation term: probability
theory!
Goal: Agnostic bounds, i.e. bounds that do not require
assumptions on P! (Statistical Learning?)

Often need mild assumptions on P... (Nonparametric
Statistics?)



Supervised LearningBinary Classification Loss Issue

Empirical Risk Minimizer

f̂ = argmin
f ∈S

1
n

n∑
i=1

`0/1(Yi , f (X i ))

Classification loss: `0/1(y , f (x)) = 1y 6=f (x)

Not convex and not smooth!



Supervised LearningProbabilistic Point of View
Ideal Solution and Estimation

So
ur

ce
:

A
.F

er
m

in

The best solution f ∗ (which is independent of Dn) is
f ∗ = arg min

f ∈F
R(f ) = arg min

f ∈F
E [`(Y , f (X ))] = arg min

f ∈F
EX

[
EY |X [`(Y , f (x))]

]
Bayes Predictor (explicit solution)
In binary classification with 0− 1 loss:

f ∗(X ) =
{

+1 if P (Y = +1|X ) ≥ P (Y = −1|X )
−1 otherwise

Issue: Solution requires to know E [Y |X ] for all values of X !
Solution: Replace it by an estimate.



Supervised LearningOptimization Point of View
Loss Convexification

Minimizer of the risk

f̂ = argmin
f ∈S

1
n

n∑
i=1

`0/1(Yi , f (X i ))

Issue: Classification loss is not convex or smooth.
Solution: Replace it by a convex majorant.



Supervised LearningProbabilistic and Optimization Framework
How to find a good function f with a small risk

R(f ) = E [`(Y , f (X ))] ?
Canonical approach: f̂S = argminf ∈S

1
n
∑n

i=1 `(Yi , f (X i ))

Problems
How to choose S?
How to compute the minimization?

A Probabilistic Point of View
Solution: For X , estimate Y |X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods,
k-nn, Naive Bayes, Tree, Bagging...

An Optimization Point of View
Solution: If necessary replace the loss ` by an upper bound `′ and
minimize the empirical loss: SVR, SVM, Neural Network,Tree,
Boosting...
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Error EstimationExample: TwoClass Dataset

Synthetic Dataset
Two features/covariates.
Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and
K. Johnson, Springer
Numerical experiments with R and the caret package.



Error EstimationExample: Linear Discrimination



Error EstimationExample: More Complex Model



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationExample: KNN



Error EstimationTraining Error Issue
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Error behaviour
Learning/training error (error made on the learning/training
set) decays when the complexity of the method increases.
Quite different behavior when the error is computed on new
observations (generalization error).

Overfit for complex methods: parameters learned are too
specific to the learning set!
General situation! (Think of polynomial fit...)
Need to use a different criterion than the training error!



Error EstimationError Estimation vs Method Selection

Predictor Error Estimation
Goal: Given a predictor f assess its quality.
Method: Hold-out error computation (/ Error correction).
Usage: Compute an estimate of the error of a selected f
using a test set to be used to monitor it in the future.

Basic block very well understood.

Method Selection
Goal: Given a ML method assess its quality.
Method: Cross Validation (/ Error correction)
Usage: Compute error estimates for several ML methods
using training/validation sets to choose the most promising
one.

Estimates can be pointwise or better intervals.
Multiple test issues in method selection.



Error EstimationCross Validation and Error Correction

Two Approaches
Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.
Correction approach: use empirical loss criterion but correct
it with a term increasing with the complexity of S

Rn(f̂S)→ Rn(f̂S) + cor(S)
and choose the method with the smallest corrected risk.

Which loss to use?
The loss used in the risk: most natural!
The loss used to estimate θ̂: penalized estimation!



Error EstimationCross Validation
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Very simple idea: use a second learning/verification set to
compute a verification error.
Sufficient to remove the dependency issue!
Implicit random design setting...

Cross Validation
Use (1− ε)× n observations to train and ε× n to verify!
Possible issues:

Validation for a learning set of size (1− ε)× n instead of n ?
Unstable error estimate if εn is too small ?

Most classical variations:
Hold Out,
Leave One Out,
V -fold cross validation.



Error EstimationHold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size
n × (1− ε) and n × ε.
Learn f̂ HO from the subset Dtrain.
Compute the empirical error on the subset Dtest:

RHO
n (f̂ HO) = 1

nε
∑

(X i ,Yi )∈Dtest

`(Yi , f̂ HO(X i ))

Predictor Error Estimation
Use f̂ HO as predictor.
Use RHO

n (f̂ HO) as an estimate of the error of this estimator.

Method Selection by Cross Validation
Compute RHO

n (f̂ HO
S ) for all the considered methods,

Select the method with the smallest CV error,
Reestimate the f̂S with all the data.



Error EstimationHold Out
Principle

Split the dataset D in 2 sets Dtrain and Dtest of size
n × (1− ε) and n × ε.
Learn f̂ HO from the subset Dtrain.
Compute the empirical error on the subset Dtest:

RHO
n (f̂ HO) = 1

nε
∑

(X i ,Yi )∈Dtest

`(Yi , f̂ HO(X i ))

Only possible setting for error estimation.

Hold Out Limitation for Method Selection
Biased toward simpler method as the estimation does not use
all the data initially.
Learning variability of RHO

n (f̂ HO) not taken into account.



Error EstimationV -fold Cross Validation
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Principle
Split the dataset D in V sets Dv of almost equals size.
For v ∈ {1, ..,V }:

Learn f̂ −v from the dataset D minus the set Dv .
Compute the empirical error:

R−v
n (f̂ −v ) = 1

nv

∑
(X i ,Yi )∈Dv

`(Yi , f̂ −v (X i ))

Compute the average empirical error:

RCV
n (f̂ ) = 1

V

V∑
v=1
R−v

n (f̂ −v )

Estimation of the quality of a method not of a given predictor.
Leave One Out : V = n.



Error EstimationV -fold Cross Validation

Analysis (when n is a multiple of V )
The R−v

n (f̂ −v ) are identically distributed variable but are not
independent!
Consequence:

E
[
RCV

n (f̂ )
]

= E
[
R−v

n (f̂ −v )
]

Var
[
RCV

n (f̂ )
]

= 1
V Var

[
R−v

n (f̂ −v )
]

+ (1− 1
V )Cov

[
R−v

n (f̂ −v ),R−v ′
n (f̂ −v ′)

]
Average risk for a sample of size (1− 1

V )n.
Variance term much more complex to analyze!
Fine analysis shows that the larger V the better...

Accuracy/Speed tradeoff: V = 5 or V = 10!



Error EstimationCross Validation



Error EstimationExample: KNN (k̂ = 61 using
cross-validation)



Error EstimationTrain/Validation/Test
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Selection Bias Issue:
After method selection, the cross validation is biased.
Furthermore, it qualifies the method and not the final
predictor.

Need to (re)estimate the error of the final predictor.
(Train/Validation)/Test strategy

Split the dataset in two a (Train/Validation) and Test.
Use CV with the (Train/Validation) to select a method.
Train this method on (Train/Validation) to obtain a
single predictor.
Estimate the performance of this predictor on Test.



Error EstimationError Correction

Empirical loss of an estimator computed on the dataset used
to chose is is biased!
Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic
Estimate an upper bound of this optimism for a given family.
Correct the empirical loss by adding this upper bound.

Rk: Finding such an upper bound can be complicated!
Correction often called a penalty.



Error EstimationPenalization

Penalized Loss
Minimization of

argmin
θ∈Θ

1
n

n∑
i=1

`(Yi , fθ(X i )) + pen(θ)

where pen(θ) is an error correction (penalty).

Penalties
Upper bound of the optimism of the empirical loss
Depends on the loss and the framework!

Instantiation
Mallows Cp: Least Squares with pen(θ) = 2d

nσ
2.

AIC Heuristics: Maximum Likelihood with pen(θ) = d
n .

BIC Heuristics: Maximum Likelohood with pen(θ) = log(n)d
n .

Structural Risk Minimization: Pred. loss and clever penalty.



Outline

1 Introduction

2 Supervised Learning

3 Error Estimation

4 Cross Validation and Weights

5 References



Cross Validation and
Weights

Unbalanced and Rebalanced Dataset
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Unbalanced Class
Setting: One of the class is much more present than the
other.
Issue: Classifier too attracted by the majority class!

Rebalanced Dataset
Setting: Class proportions are different in the training and
testing set (stratified sampling)
Issue: Training errors are not estimate of testing errors.



Cross Validation and
Weights

Resampling Strategies
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Resampling
Modify the training dataset so that the classes are more
balanced.
Issues: Training data is not anymore representative of testing
data
Hard to do it right!



Cross Validation and
Weights

Resampling Effect
Testing

Testing class prob.: πt(k)
Testing error target:

Eπt [`(Y , f (X ))] =∑
k
πt(k)E [`(Y , f (X ))|Y = k]

Training
Training class prob.: πtr (k)
Training Error target:

Eπtr [`(Y , f (X ))] =∑
k
πtr (k)E [`(Y , f (X ))|Y = k]

Implicit Testing Error Using the Training One
Amounts to use a weighted loss:
Eπtr [`(Y , f (X ))] =

∑
k
πtr (k)E [`(Y , f (X ))|Y = k]

=
∑

k
πt(k)E

[
πtr (k)
πt(k) `(Y , f (X ))

∣∣∣∣Y = k
]

= Eπt

[
πtr (Y )
πt(Y ) `(Y , f (X ))

]
Put more weight on less probable classes!



Cross Validation and
Weights

Weighted Loss

In unbalanced situation, often the cost of misprediction is not
the same for all classes (e.g. medical diagnosis, credit
lending...)
Much better to use this explicitly than to do blind resampling!

Weighted Loss
Weighted loss:

`(Y , f (X )) −→ C(Y )`(Y , f (X ))
Weighted error target:

E [C(Y )`(Y , f (X ))]

Rk: Strong link with ` as C is independent of f .
Often allow to reuse algorithm constructed for `.
C may also depends on X ...



Cross Validation and
Weights

Weighted Loss, `0/1 loss and Bayes
Classifier

The Bayes classifier is now:
f ? = argminE [C(Y )`(Y , f (X ))] = argminEX

[
EY |X [C(Y )`(Y , f (X ))]

]
Bayes Predictor

For `0/1 loss,
f ?(X ) = argmax

k
C(k)P (Y = k|X )

Same effect than a threshold modification for the binary
setting!

Allow to put more emphasis on some classes than others.



Cross Validation and
Weights

Linking Weights and Proportions

Cost and Proportions
Testing error target:
Eπt [Ct(Y )`(Y , f (X ))] =

∑
k
πt(k)Ct(k)E [`(Y , f (X ))|Y = k]

Training error target
Eπtr [Ctr (Y )`(Y , f (X ))] =

∑
k
πtr (k)Ctr (k)E [`(Y , f (X ))|Y = k]

Coincide if
πt(k)Ct(k) = πtr (k)Ctr (k)

Lots of flexibility in the choice of Ct , Ctr or πtr !



Cross Validation and
Weights

Combining Weights and Resampling

Weighted Loss and Resampling
Weighted loss: choice of a weight Ct 6= 1.
Resampling: use a πtr 6= πt .

Stratified sampling may be used to reduced the size of a
dataset without loosing a low probability class!

Combining Weights and Resampling
Weighted loss: use Ctr = Ct as πtr = πt .
Resampling: use an implicit Ct(k) = πtr (k)/πt(k).
Combined: use Ctr (k) = Ct(k)πt(k)/πtr (k)

Most ML methods allow such weights!
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