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Machine Learnlng Introduction

Traditional modeling:
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A definition by Tom Mitchell

(http://www.cs.cmu.edu/~tom/)

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T , as measured by P, improves with
experience E.

Source: azavea


http://www.cs.cmu.edu/~tom/

Credit Score, Bank Risk, ...

Credit Score
@ Task: Prediction (default or no default)

o Data: Client profile, Client credit history...

@ Performance measure: error rate.

Introduction

Source: A. Fermin



News Clustering

= Google News

Introduction
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A news clustering algorithm:

@ Task: group articles corresponding to the same news

@ Performance: quality of the clusters

o Experience: set of articles

Source: theverge.com



Supervised and Unsupervised Introduction
x
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Supervised Learning (Imitation)

@ Goal: Learn a function f predicting a variable Y from an
individual X.

e Data: Learning set with labeled examples (X;, Yi)

@ Assumption: Future data behaves as past datal
@ Predicting is not explaining!

Unsupervised Learning (Structure Discovery)

@ Goal: Discover a structure within a set of individuals (X).

e Data: Learning set with unlabeled examples (X;)

@ Unsupervised learning is not a well-posed setting....

Source: KDnuggets



A RObOt that LearnS Introduction

A robot endowed with a set of sensors playing football:

@ Task: play football
@ Performance: score evolution

e Experience:

e current environment and outcome,
e past games

Source: Rutgers Prep School



Three Kinds of Learning

Introduction
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Source: BCG



Machine Learnlng Introduction

(Unsupervised /Supervised)

classification scikit-learn
R @ algorithm cheat-sheet
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@ Huge catalog of methods,

@ Need to define the performance, feature design.

@ Here, we will only see supervised learning

Source: scikit-learn.org



Credit Score, Bank Risk, ...

Credit Score
@ Task: Prediction (default or no default)

o Data: Client profile, Client credit history...

@ Performance measure: error rate.

Introduction

Source: A. Fermin



Spam detection (Text classification)

Spam detection

@ Task: Prediction (spam or no spam)
o Data: email collection

@ Performance measure: error rate.

Introduction

Source: http://www.jesperdeleuran.dk/



DeteCtlon Introduction

New Algorithms tor Complex Data
New Mexico, USA , 2015

Face detection

@ Task: Detect the position of faces in an image

o Different setting?

o Reformulation as a supervised learning problem.

@ Goal: Detect the presence of faces at several positions and
scales.

e Data: X = sub image / Y = presence or no of a face...

o Performance measure: error rate.

@ Lots of detections in an image: post processing required...

o Performance measure: box precision.

Source: A. Fermin



N um bel’ Introduction
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Reading a ZIP code on an envelop

@ Task: give a number from an image.
e Data: X = image / Y = corresponding number.

@ Performance measure: error rate.

Source: Y. LeCun



E uca |ypt us Introduction

Simple (and classical) dataset.

@ Task: predict the height from circumference.
e Data: X = circumference / Y = height.
°

Performance measure: means squared error.




Under and Over Fitting Introduction

Price
Price

size Size size

6o+ B1x B0+ Byx + Box2 B0+ B1x + 6332 + Bpx2+ O,x2
High bias (underfit) High variance oo
X X, X
X X
X X X x X X X X
X X X
XX X XX X XXX X XX X
XX X XX X XX X
Under-fitting Appropriate-fitting Over-fitting
(too simple to (forcefitting--too
explain the variance) good to be'true) pG

Finding the Right Complexity

@ What is best?

o A simple model that is stable but false? (oversimplification)
e A very complex model that could be correct but is unstable?
(conspiracy theory)

@ Neither of them: tradeoff that depends on the dataset.

Source: geeksforgeeks.com



ML Plpellne Introduction

TRAINING

model training

Training
Set

Machine
Learning

Validation
Set

Raw data &
target

hyperparameters tuning
model selection

S m

Test Set

PREDICTING l

Feature

Engineering Predict Target

New data

Learning pipeline

@ Test and compare models.

@ Deployment pipeline is different!

Source: CDiscount



IFMA/IMP Bloc 3 ML - Goal Introduction
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@ Know the inner mechanism of the most classical supervised
ML methods (Logistic, SVM, Neural Nets and Trees) in
order to understand their strengths and limitations.

@ Understand some optimization tools used in ML

@ A project (homework) with R




SC h ed u |e Introduction

IFMA/IMP Bloc 3 ML - 5 Lectures (09h00-12h15)

e Fri. 15/01: Statistical Learning: Introduction and Cross
Validation

Tue. 19/01: ML Methods: Probabilistic Point of View
Tue. 26/01: ML Methods: Optimization Point of View
Tue. 02/02: ML Methods: SVM

Tue. 09/02: ML Methods: Trees and Ensemble Methods,
Neural Networks, etc

e 12/03: Homework (project with 2-3 students)



e 12/03: Homework (project with 2-3 students)
@ For this homework :

You will have to build a good predictor from a dataset that |
will give you.

The goal is not necessarily to obtain the best performance but
to perform the work of a good data scientist.

You need to describe the task and the dataset using descriptive
statistics and graphics.

You should explain how you have obtained your best predictor
both in term of strategy and error estimation.

You are expected to describe the strength and the limitation of
your approach and to propose some possible enhancements.
You may use R or Python. If you a use a notebook, please
provide a compiled version.

The report should consists of around 20-30 pages and is much
more than a code listing.

Originality of the work will be taken into account and any
plagiarism will be sanctioned.



Refe rences Introduction
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% TensorFlow (2nd ed.)

~  O'Reilly, 2019
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SUperVISed Learnlng Supervised Learning

Supervised Learning Framework

@ Input measurement X € X

@ Output measurement Y € ).

o (X,Y) ~ P with P unknown.

e Training data : D, = {(Xy, Y1),...,(X,,, Ya)} (i.id. ~P)

e Often
o X€RYand Y € {-1,1} (classification)
o or X € R? and Y € R (regression).

e A predictor is a function in F = {f : X — ) meas.}

o Construct a good predictor f from the training data. \

@ Need to specify the meaning of good.

@ Classification and regression are almost the same problem!



Supervised Learning

Loss and Probabilistic Framework

Loss function for a generic predictor
@ Loss function: /(Y, (X)) measures the goodness of the

prediction of Y by f(X)

@ Examples:
e Prediction loss: g(Y, f(&)) = lYif(K)
(X)) =Y —f(X)]?

o Quadratic loss: £(
Risk function
@ Risk measured as the average loss for a new couple:

R(f) = Ex,v)~r [€(Y, f(X))]

@ Examples:
o Prediction loss: E [(Y, f(X))] =P (Y # f(X))
e Quadratic loss: E[(Y,f(X))] =E [|Y — f(X)|?]

N,

e Beware: As f depends on D,,, R(f) is a random variable!



BeSt SOlUtIOﬂ Supervised Learning

@ The best solution f* (which is independent of D,) is
f* =arg min R(f) = arg ;‘%I]r:I_E [(Y,f(X))] =arg %'JT_‘_EK [Eym [y, f(&))]}

Bayes Predictor (explicit solution)

e In binary classification with 0 — 1 loss:
+1 if P(Y=+1X)>P(Y=-1|X)
A(X) = S P(Y =+11X)>1/2
—1 otherwise

e In regression with the quadratic loss
(X)) =E[Y|X]

Issue: Solution requires to know E [Y|X] for all values of X! |




Goal Supervised Learning

Machine Learning

@ Learn a rule to construct a predictor f € F from the training

o~

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.

@ In practice, the rule should be an algorithm!

Canonical example: Empirical Risk Minimizer
@ One restricts f to a subset of functions S = {fy,0 € ©}

@ One replaces the minimization of the average loss by the
minimization of the empirical loss

~ 12
f =f-=argmin— > (Y fo(X;
5 fejgee@n;( (X))

@ Examples:
e Linear regression
e Linear discrimination with

S={xrsign{x" 8+ 9} /8R! O e R}



Euca |ythS Supervised Learning

Simple (and classical) dataset.

@ Task: predict the height from circumference.
e Data: X = circumference / Y = height.
°

Performance measure: means squared error.




Euca |ythS Supervised Learning
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Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height

@ Can we predict the height from the circumference?



Euca |ythS Supervised Learning

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height

@ Can we predict the height from the circumference?
e by a line?



Euca |ythS Supervised Learning

s
cire

Dataset - P.A. Cornillon

@ Real dataset of 1429 eucalyptus obtained by P.A. Cornillon:
e X: circumference / Y: height

@ Can we predict the height from the circumference?
e by a line? by a more complex formula?



U nder_flttlng / Over_flttlng |SSU€ Supervised Learning

ho(x) = g(flo + 011 + Oams)  g(0p + 0171 + Ooza  9(00 + 12y + Oaa3
+032% + 0423 +0satxy + Oyadal
+05x129) +9_—j.r?.‘l‘g + 95.1'?.’1'2 +...
OVERFITTING
(high variance)

( g = sigmoid function)

UNDERFITTING
(high bias)

Model Complexity Dilemna
@ What is best a simple or a complex model?
@ Too simple to be good? Too complex to be learned?

Source: A. Ng



Under_flttlng / Over_flttlng Issue Supervised Learning

High Bias Low Bias
Low Variance High Variance
.

Prediction Error

Test error
____Training error

Underfitting Good models Overfitting

Low Complexity of the model High

Under-fitting / Over-fitting

@ Under-fitting: simple model are too simple.

o Over-fitting: complex model are too specific to the training
set.

Source: Unknown



BIaS—VarlanCG Dllemma Supervised Learning

@ General setting:

F = {measurable functions X — Y}
Best solution: f* = argmins.» R(f)
Class S C F of functions

Ideal target in S: & = argmin,cgs R(f)
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Approximation error and estimation error (Bias/Variance)

R(fs) — R(F*) = R(£5) — R(F*) + R(Fs) — R(£)

Approximation error Estimation error

@ Approx. error can be large if the model S is not suitable.
@ Estimation error can be large if the model is complex.

Agnostic approach

@ No assumption (so far) on the law of (X, Y).




U nder_flttlng / Over_flttlng |SSU€ Supervised Learning

Underfit
(High bias)

Generalization
error

Error

Overfit
(High
variance)

Model complexity
o Different behavior for different model complexity

@ Low complexity model are easily learned but the
approximation error (bias) may be large (Under-fit).

@ High complexity model may contain a good ideal target but
the estimation error (variance) can be large (Over-fit)

Bias-variance trade-off <= avoid overfitting and underfittingJ

e Rk: Better to think in term of method (including feature
engineering and specific algorithm) rather than only of model.

Source: Unknown



Theoretlcal AnalySIS Supervised Learning

Statistical Learning Analysis

@ Error decomposition:
R(fs) = R(f*) = R(£5) — R(f") + R(fs) — R(fs)
Approximation error Estimation error

@ Bound on the approximation term: approximation theory.

@ Probabilistic bound on the estimation term: probability
theory!

@ Goal: Agnostic bounds, i.e. bounds that do not require
assumptions on P! (Statistical Learning?)

@ Often need mild assumptions on P... (Nonparametric
Statistics?)



Binary Classification Loss Issue Supervised Learning

Empirical Risk Minimizer

~ 1<
f = argmin = Zfo/l(yia f(X5))
fes n il

o Classification loss: £°/1(y, f(x)) = 1,200

@ Not convex and not smooth!



PrObabIIIStIC POIITt Of VleW Supervised Learning
Ideal Solution and Estimation

@ The best solution f* (which is independent of D,) is
f*=arg fmeljg_ R(f) = arg mlnE [(Y,f(X))] =arg m|n Ex {IEHX [e(Y, f(x ))]]

Bayes Predictor (explicit solution)

In binary classification with 0 — 1 loss:
1 if P(Y=41X)>P(Y=-1|X
g = [T RO =FUX) 2 B(Y = -11)
—1 otherwise

@ Issue: Solution requires to know E [Y|X] for all values of X!

Source: A. Fermin

@ Solution: Replace it by an estimate.




Optlmlzation POIHt Of VleW Supervised Learning
Loss Convexification

35 - (yf0<0) 4
- T

3 1

25 B

2 1

15 B

Minimizer of the risk

. 1
f = argmin — ZZO/I(Y,-, f(X;))
fes n i=1

@ Issue: Classification loss is not convex or smooth.

@ Solution: Replace it by a convex majorant.




Probabilistic and Optimization Framework  supenised Learning

How to find a good function f with a small risk
R(f) =E[(Y,f(X))] ?

~

Canonical approach: fs = argmingcs 2 271 £(Y;, f(X;))

Problems

@ How to choose §?

@ How to compute the minimization?

A Probabilistic Point of View

Solution: For X, estimate Y|X plug this estimate in the Bayes
classifier: (Generalized) Linear Models, Kernel methods,
k-nn, Naive Bayes, Tree, Bagging...

An Optimization Point of View

Solution: If necessary replace the loss ¢ by an upper bound ¢ and
minimize the empirical loss: SVR, SVM, Neural Network, Tree,
Boosting...




Outline

e Error Estimation



Example: TwoClass Dataset Error Estimation

Synthetic Dataset

e Two features/covariates.

@ Two classes.

o Dataset from Applied Predictive Modeling, M. Kuhn and
K. Johnson, Springer

@ Numerical experiments with R and the caret package.




Example: Linear Discrimination

Error Estimation

Logistic
Decision region Decision boundary
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Example: More Complex Model

Error Estimation

Naive Bayes with kernel density estimates

Decision region Decision boundary
-
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06 06 ) ® q
% classes f-g ’ classes
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Example: KNN

K-NN with k=1
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Example: KNN

K-NN with k=5
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Example: KNN

K-NN with k=9
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Example: KNN

K-NN with k=13
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Example: KNN

K-NN with k=17
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Example: KNN

K-NN with k=21
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Example: KNN

K-NN with k=25
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Example: KNN

K-NN with k=29
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Example: KNN

K-NN with k=33
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Example: KNN

K-NN with k=37
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Example: KNN

K-NN with k=45
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Example: KNN

K-NN with k=53
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Example: KNN

K-NN with k=61
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Example: KNN

K-NN with k=69
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Example: KNN

K-NN with k=77
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Example: KNN

K-NN with k=85
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Example: KNN

K-NN with k=101
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Example: KNN

K-NN with k=109
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Example: KNN

K-NN with k=117
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Example: KNN

K-NN with k=125
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Example: KNN

K-NN with k=133
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Example: KNN

K-NN with k=141
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Example: KNN

K-NN with k=149
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Example: KNN

K-NN with k=157
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Example: KNN

K-NN with k=165
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Example: KNN

K-NN with k=173
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Example: KNN

K-NN with k=181
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Example: KNN

Error Estimation

K-NN with k=189
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Example: KNN

Error Estimation
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Tralning ErrOF ISSUG Error Estimation

Underfit
(High bias)

Generalization
error

Error

Overfit
(High
variance)

Training error

Model complexity

Error behaviour

@ Learning/training error (error made on the learning/training
set) decays when the complexity of the method increases.

@ Quite different behavior when the error is computed on new
observations (generalization error).

@ Overfit for complex methods: parameters learned are too
specific to the learning set!

@ General situation! (Think of polynomial fit...)

@ Need to use a different criterion than the training error!

Source: JMP



Error Estimation vs Method Selection Error Estimation

Predictor Error Estimation

@ Goal: Given a predictor f assess its quality.
@ Method: Hold-out error computation (/ Error correction).

@ Usage: Compute an estimate of the error of a selected
using a test set to be used to monitor it in the future.

@ Basic block very well understood.

Method Selection

@ Goal: Given a ML method assess its quality.
e Method: Cross Validation (/ Error correction)

@ Usage: Compute error estimates for several ML methods
using training/validation sets to choose the most promising
one.

@ Estimates can be pointwise or better intervals.
@ Multiple test issues in method selection.



Cross Validation and Error Correction Error Estimation

Two Approaches

e Cross validation: Very efficient (and almost always used in
practice!) but slightly biased as it target uses only a fraction
of the data.

@ Correction approach: use empirical loss criterion but correct
it with a term increasing with the complexity of S

Ra(fs) = Ra(fs) + cor(S)
and choose the method with the smallest corrected risk.

Which loss to use?

@ The loss used in the risk: most natural!

o The loss used to estimate 6: penalized estimation!

A




C I’OSS Va | id atiO n Error Estimation

Purpose || Modeiing || Perormance

Resample

e Very simple idea: use a second learning/verification set to
compute a verification error.

o Sufficient to remove the dependency issue!

@ Implicit random design setting...

Cross Validation
@ Use (1 — €) x n observations to train and € x n to verify!

@ Possible issues:
e Validation for a learning set of size (1 — ¢) X n instead of n ?
o Unstable error estimate if en is too small 7

@ Most classical variations:
e Hold Out,
o Leave One Out,
e V-fold cross validation.

Source: M. Kiihn



HOld OUt Error Estimation

Principle

@ Split the dataset D in 2 sets Dyrain and Diest of size
nx(1l—e¢)and nxe.

o Learn £HO from the subset Dypain.

@ Compute the empirical error on the subset Diest:

~ 1 7
RHO(FHOY = — S (v, 70(X,))
(X;,Yi)EDrest

Predictor Error Estimation

o Use FHO a5 predictor.

A\

@ Use R,’;’O(?HO) as an estimate of the error of this estimator.

V.

Method Selection by Cross Validation

o Compute RHO(££0) for all the considered methods,

@ Select the method with the smallest CV error,

@ Reestimate the ?3 with all the data.

A




HOld OUt Error Estimation

@ Split the dataset D in 2 sets Dyrain and Diest of size
nx(1l—e¢)and nxe.

o Learn MO from the subset Dyain.
@ Compute the empirical error on the subset Diest:
= 1 =
RAC(FO) =— > Y, f"(X)
(X;,Yi)EDrest

@ Only possible setting for error estimation.

Hold Out Limitation for Method Selection

@ Biased toward simpler method as the estimation does not use
all the data initially.

o Learning variability of RHO(£HO) not taken into account.




V-fold Cross Validation Error Estimation

Purpose Modeling Performance

P Radom Dat Groupigs ———————>
@ Split the dataset D in V sets D, of almost equals size.
e Forve{l, . V}

o Learn f~V from the dataset D minus the set D,.

o Compute the empirical error:
—v(7—v i T—v
Ry(F)=— 3 U F(x)

Y (X,,Y))ED,

e Compute the average empirical error'

RCV ZR

v

@ Estimation of the quality of a method not of a given predictor.
@ Leave One Qut : V = n.

Source: M. Kiihn



V-fold Cross Validation Error Estimation

Analysis (when n is a multiple of V)

~

@ The R,Y(f~") are identically distributed variable but are not
independent!

o Consequence:
E [R$V(F)| =E [R;"(F™)]

Var [RSY ()] = %Var [RoY(F)

+(1- é) Cov [R,¥(F), Ry ()]

Average risk for a sample of size (1 — 4)n.

Variance term much more complex to analyze!

Fine analysis shows that the larger V the better...

Accuracy/Speed tradeoff: V =5 or V = 10!



Error Estimation

@ AccuracyCVPAC

. AccuracyCVinf
. Accuracy

. AccuracyCV
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Example: KNN (k = 61 using
cross-validation)

Error Estimation

k-NN with k=61
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Train/Validation /Test

Error Estimation

[ Original set

[ Training set [ Testset

[ Training set [ Validation set | Test set

Training, tuning, and
evaluation

M
Machine le i <A\ ) 1

\U
Predictive Model )

Q Final performance estimate

@ Selection Bias Issue:

o After method selection, the cross validation is biased.
o Furthermore, it qualifies the method and not the final

predictor.

@ Need to (re)estimate the error of the final predictor.

(Train/Validation)/Test strategy

@ Split the dataset in two a (Train/Validation) and Test.

@ Use CV with the (Train/Validation) to select a method.

@ Train this method on (Train/Validation) to obtain a

single predictor.

@ Estimate the performance of this predictor on Test.

Source: Shan-Hung Wu & Datalab



EI’I’OI’ COI’I’eCtiOI"I Error Estimation

@ Empirical loss of an estimator computed on the dataset used
to chose is is biased!

@ Empirical loss is an optimistic estimate of the true loss.

Risk Correction Heuristic

@ Estimate an upper bound of this optimism for a given family.

@ Correct the empirical loss by adding this upper bound.

@ Rk: Finding such an upper bound can be complicated!

@ Correction often called a penalty.



Penallzation Error Estimation

Penalized Loss

@ Minimization of

argmin = 3" (Y, (X)) + pen(0)
be® N7

where pen(0) is an error correction (penalty).

Penalties

@ Upper bound of the optimism of the empirical loss

@ Depends on the loss and the framework!

N

Instantiation

o Mallows Cp: Least Squares with pen(f) = 2952
@ AIC Heuristics: Maximum Likelihood with pen(§) = ¢

@ BIC Heuristics: Maximum Likelohood with pen(f) = log(n)4

;.
@ Structural Risk Minimization: Pred. loss and clever penalty.




Outline

@ Cross Validation and Weights



Unbalanced and Rebalanced Dataset Cross Validation and

Weights

Unbalanced Class

@ Setting: One of the class is much more present than the
other.

o Issue: Classifier too attracted by the majority class!

i

Rebalanced Dataset

e Setting: Class proportions are different in the training and
testing set (stratified sampling)

@ Issue: Training errors are not estimate of testing errors.

Source: University of Granada



Resampllng Strategies Cross Validation and

Weights

sampling: Rebalancing

the dataset Imbalan ced Data

Under-sampling Over-sampling

Resampling

@ Modify the training dataset so that the classes are more
balanced.

@ Issues: Training data is not anymore representative of testing
data

e Hard to do it right!

Source: Oracle



Resampling Effect

Testing
@ Testing class prob.: (k)
@ Testing error target:
Ex [E(Y, £(X))] =
Zm EL(Y, f(X)Y = K]

V.

Cross Validation and
Weights

@ Training class prob.: 7 (k)
@ Training Error target:

Exr, (Y, F(X))] =

S rlKE Y- F)IY =K

4

Implicit Testing Error Using the Training One

@ Amounts to use a weighted loss:

TI'tr[ng ]_Zﬂ-tr [EYf( ))|Y_k]
_ Z |:7Ttr((:))€(y7 f(X))' Y — k]
=E,, {:tt’((;/))e(y, f(X))}

@ Put more weight on less probable classes!




Welghted LOSS Cross Validation and

Weights

@ In unbalanced situation, often the cost of misprediction is not
the same for all classes (e.g. medical diagnosis, credit
lending...)

@ Much better to use this explicitly than to do blind resampling!

Weighted Loss

o Weighted loss:
(Y, f(X)) = (Y)Y, f(X))
@ Weighted error target:
E[C(Y)UY, F(X))]

@ Rk: Strong link with ¢ as C is independent of f.
@ Often allow to reuse algorithm constructed for /.

@ C may also depends on X...



Weighted Loss, ¢%/! loss and Bayes Cros Validation and
. Weights
Classifier

@ The Bayes classifier is now:
f* = argmin E [C(Y){(Y, £(X))] = argmin Ex [Eyx [C(Y)U(Y, F(X))]

Bayes Predictor

e For /%1 |oss,
f*(X) = argmax C(k)P (Y = k|X)
k

@ Same effect than a threshold modification for the binary
setting!

@ Allow to put more emphasis on some classes than others.



Llnklng Weights and PrOpOFtIOnS Cross Validation and

Weights

Cost and Proportions

@ Testing error target:
Er, [G(Y)UY, F(X))] = 3 me(K) CG(R)E [E(Y, F(X))|Y = K]
k
@ Training error target
Er, [Cer (Y)Y, T(X))] = Zwtr K)Cer(K)E [L(Y, f(X))|Y = K]
k
e Coincide if

(k) Ce(k) = e (k) Cer (k)

@ Lots of flexibility in the choice of C;, G or ¢!



Comblning WeightS and Resampllng Cross Validation and

Weights

Weighted Loss and Resampling

o Weighted loss: choice of a weight C; # 1.

o Resampling: use a 7y, # ;.

@ Stratified sampling may be used to reduced the size of a
dataset without loosing a low probability class!

Combining Weights and Resampling

o Weighted loss: use C;, = C; as 7y, = 7t
e Resampling: use an implicit Ci(k) = ¢ (k)/me(k).
@ Combined: use Ctr(k) = Ct(k)ﬂ't(k)/ﬂ'tr(k)

@ Most ML methods allow such weights!



Outline
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