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Motivation

Credit Default, Credit Score, Bank Risk, Market Risk Management

Data: Client profile, Client credit history...
Input: Client profile
Output: Credit risk



Motivation

Spam detection (Text classification)

Data: email collection
Input: email
Output : Spam or No Spam



Motivation

Face Detection

Data: Annotated database of images
Input : Sub window in the image
Output : Presence or no of a face...



Motivation

Number Recognition

Data: Annotated database of images (each image is
represented by a vector of 28× 28 = 784 pixel intensities)
Input: Image
Output: Corresponding number



Machine Learning

A definition by Tom Mitchell (http://www.cs.cmu.edu/~tom/)
A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with
experience E.

http://www.cs.cmu.edu/~tom/


Supervised Learning

Supervised Learning Framework

Input measurement X = (X (1),X (2), . . . ,X (d)) ∈ X
Output measurement Y ∈ Y.
(X,Y ) ∼ P with P unknown.
Training data : Dn = {(X1,Y1), . . . , (Xn,Yn)} (i.i.d. ∼ P)
Often

X ∈ Rd and Y ∈ {−1, 1} (classification)
or X ∈ Rd and Y ∈ R (regression).

A classifier is a function in F = {f : X → Y}

Goal

Construct a good classifier f̂ from the training data.

Need to specify the meaning of good.
Formally, classification and regression are the same problem!



Loss and Probabilistic Framework

Loss function
Loss function : `(f (x), y) measure how well f (x) “predicts"
y .
Examples:

Prediction loss: `(Y , f (X)) = 1Y 6=f (X)
Quadratic loss: `(Y ,X) = |Y − f (X)|2

Risk of a generic classifier
Risk measured as the average loss for a new couple:

R(f ) = E [`(Y , f (X))]

Examples:
Prediction loss: E [`(Y , f (X))] = P {Y 6= f (X)}
Quadratic loss: E [`(Y , f (X))] = E

[
|Y − f (X)|2

]
Beware: As f̂ depends on Dn



Supervised Learning

Experience, Task and Performance measure
Training data : D = {(X1,Y1), . . . , (Xn,Yn)} (i.i.d. ∼ P)
Predictor: f : X → Y
Cost/Loss function : `(f (X),Y )
Risk: R(f ) = E [`(Y , f (X))]

Often `(f (X),Y ) = |f (X)− Y |2 or `(f (X),Y ) = 1Y 6=f (X)

Goal

Learn a rule to construct a classifier f̂ ∈ F from the training
data Dn s.t. the risk R(f̂ ) is small on average or with high
probability with respect to Dn.



Goal

Machine Learning

Learn a rule to construct a classifier f̂ ∈ F from the training
data Dn s.t. the risk R(f̂ ) is small on average or with high
probability with respect to Dn.

Canonical example: Empirical Risk Minimizer
One restricts f to a subset of functions S = {fθ, θ ∈ Θ}
One replaces the minimization of the average loss by the
minimization of the empirical loss

f̂ = f
θ̂

= argmin
fθ,θ∈Θ

1
n

n∑
i=1

`(Yi , fθ(Xi ))

Examples:
Linear discrimination with

S = {x 7→ sign{βT x + β0} /β ∈ Rd , β0 ∈ R}



Example: TwoClass Dataset

Synthetic Dataset
Two features/covariates.
Two classes.

Dataset from Applied Predictive Modeling, M. Kuhn and
K. Johnson, Springer
Numerical experiments with R and the caret package.



Example: Linear Discrimination



Example: More Complex Model



Under-fitting / Over-fitting Issue

Different behavior for different model complexity
Under-fit : Low complexity models are easily learned but too
simple to explain the truth.
Over-fit : High complexity models are memorizing the data
they have seen and are unable to generalize to unseen
examples.



Under-fitting / Over-fitting Issue

We can determine whether a predictive model is underfitting
or overfitting the training data by looking at the prediction
error on the training data and the test data.
How to estimate the test error ?



Binary Classification Loss Issue

Empirical Risk Minimizer

f̂ = argmin
f ∈S

1
n

n∑
i=1

`0/1(Yi , f (Xi ))

Classification loss: `0/1(y , f (x)) = 1y 6=f (x)

Not convex and not smooth!



Statistical Point of View
Ideal Solution and Estimation

The best solution f ∗ (which is independent of Dn) is

f ∗ = arg min
f ∈F

R(f ) = arg min
f ∈F

E [`(Y , f (X))]

Bayes Predictor (Ideal solution)
In binary classification with 0− 1 loss:

f ∗(X) =
{

+1 if P {Y = +1|X} ≥ P {Y = −1|X}
−1 otherwise

Issue: Explicit solution requires to know E [Y |X] for all values of X!



Conditional prob. and Bayes Predictor



Classification Loss and Convexification

Classification loss: `0/1(y , f (x)) = 1y 6=f (x)

Not convex and not smooth!

Classical convexification

Logistic loss: `(y , f (x)) = log(1 + e−yf (x)) (Logistic / NN)
Hinge loss: `(y , f (x)) = (1− yf (x))+ (SVM)
Exponential loss: `(y , f (x)) = e−yf (x) (Boosting...)



Machine Learning



Methods (Today):

1 k Nearest-Neighbors
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